Divergent thinking is the process of exploring many options and perspectives and is a key part of effective and inclusive engineering outcomes. In engineering education, divergent exploration is often applied within idea generation; however, many other stages in engineering projects may benefit from divergent exploration, such as defining problems, identifying stakeholders, selecting problem solving approaches, and understanding potential implications of engineering decisions. Professional engineers often struggle to identify and manage diverse perspectives, and little is known about the practice of divergent exploration in engineering projects. To investigate, we interviewed a mechanical engineer about her exploration practices in a past professional project. From her striking examples of divergent thinking and barriers to its practice, we constructed a narrative-based educational tool for students, educators, and practitioners. The engineer’s firsthand experiences demonstrate that to think divergently, engineers must understand system constraints, explore widely, seek information from many sources, take risks, seek varied perspectives, and explore multiple methods to solve problems. 
                        more » 
                        « less   
                    
                            
                            Inclusivity Meter: Tracing How it Worked and What Was Learned
                        
                    
    
            Finding tangible ways to incorporate inclusion into classroom environments remains a daunting task for many educators. The engineering education literature provides examples of activities to try and practices to incorporate, but applying the literature in a manner appropriately nuanced to an educator’s specific situated context takes time and effort. There are also many unknown factors educators cannot prepare for. In this narrative study, we present the story of an instructor who takes incremental steps to build an inclusive environment in a senior capstone course in order to promote her student’s understanding of the importance of having an inclusive environment. This paper highlights how one new tool, the Inclusivity Meter (IM), produces insights for the department as it continues its Revolutionizing Engineering Departments (RED) grant. Despite various changes incorporated in the senior design and the department as a whole, students continued to bring up feelings of exclusion in departmental and college wide surveys, which warranted further attention. This study documents one quarter, Fall of 2020, as the school continues with virtual learning during the COVID-19 pandemic. The tool, the “Inclusivity Meter,” is a weekly reflection activity that asks students to answer two questions: “How included did you feel?” and “Are there any additional comments you would like to add?”. Each senior design team was required to formulate team norms and a team agreement to scaffold the conversations of inclusion. The instructor herself then reflected on these weekly enactments of the tool and becomes more aware of inclusion in her classroom and what conversations seem to bubble up around the Inclusivity Meter.She also reflects on how this practice communicates to her students her commitment to inclusion and how it has helped her encourage students to speak up about issues around inclusion. Here, we monitor this practice through a series of reflective conversations between the educator and the other two authors and present a narrative based on themes from these conversations. This study provides new engineering educators an insight into what it looks like to incorporate a specific inclusive practice, how we might start thinking differently about what works and for whom in enacting inclusive practices, and how educators can continue to develop their “integrity of practice” around inclusion. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1730354
- PAR ID:
- 10334063
- Date Published:
- Journal Name:
- ASEE annual conference
- ISSN:
- 0190-1052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A challenge instructors face is developing and accurately assessing technical communication skills to ensure students can apply and transfer the skills from the academic context into the context of engineering practice. By intentionally balancing teaching transferrable communication skills relevant to engineering practice and evaluating student understanding, engineering educators can foster competence and prepare students for the expectations of their professional careers. This study addresses two questions: (1) how can chemical engineering instructors reliably and consistently assess student communication skills, and (2) are instructor expectations aligned with those of practicing engineers? The use of well-designed rubrics is important for setting clear expectations for students, providing constructive feedback, and in team taught courses, grading consistently. This study discusses how a rubric for assessing technical communication skills in senior-level chemical engineering laboratory reports was validated and demonstrated reliability across five chemical engineering instructors. Additionally, five industry partners evaluated student reports for comparison to instructor rubric scores. Expectations and perceptions of the quality of student work align between instructors and practicing engineers, but practicing engineers prioritized safety and abstract clarity, while instructors prioritized the students’ abilities to interpret results and draw conclusions.more » « less
- 
            Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches.more » « less
- 
            Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)In addition to educating participants about inquiry instruction, equity and inclusion in STEM, and assessment, the Institute for Scientist and Engineer Educators’ (ISEE’s) Professional Development Program (PDP) is intentionally designed to provide opportunities for participants to return in subsequent years to observe (shadow), practice, and train in a variety of roles (e.g., design team leader, discussion group leader, apprentice facilitator, apprentice instructor). Returning participants not only receive instruction to guide them in these roles, but also receive feedback from core team designers and experienced facilitators and instructors while conducting and after performing these roles. Panelists will discuss one or more roles they engaged in as a PDP participant and how these experiences shaped their approaches to learning, teaching, and working with others as part of their professional careers. Topics to be covered will include leadership, facilitating dialogues and group discussions, the process of active listening, and the intentional design of ideas around diversity, equity, and inclusion.more » « less
- 
            The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to supports the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. With a theme of strong connection to industry, through changes in four essential areas, a shared department vision, faculty, curriculum, and supportive policies, this culture of “engineering with engineers” is being cultivated. Many actions have taken to develop this culture. This paper reports our continued efforts in changes of these four areas: Shared department vision: The department worked together to revise the department mission to reflect the goal of fostering engineering identity. From this shared vision, the department updated the advising procedure and began addressing the challenge of diversity and inclusion faced in engineering. A diversity and inclusion statement was discussed by all faculty and included in all syllabi offered by the department to emphasize the importance of an inclusive culture. Faculty: The pandemic prompted faculty to think differently on how they deliver their courses and interact with students. Many faculty members adapted inverted classroom pedagogy and implemented remote laboratories to continue the emphasis of “doing engineering”. The industry adviser holds weekly virtual office hours to continue to provide industry contacts for students. Although faculty summer immersion this past year was postponed due to pandemic, interactions with industry were continued in various courses. Curriculum: A new mechanical engineering curriculum rolled out in the 2019-20 academic year. Although changes have to be made due to the pandemic but the focus of “engineering with engineers” remained. An example would be the Vertical Integrated Design Projects (VIDP) courses offered in Spring 2020. Utilizing virtual communication tools such as Microsoft Teams, student teams in the VIDP courses could still interact with industry advisors on a regular basis and learned from their experiences. Supportive policies: The department has worked closely with other departments, the college and the university to develop supportive policies. Recently, the college recommended the diversity and inclusion statement developed by the department to all senior design courses offered in the college. The university was aware of the goal of this project in fostering students’ engineering identities, which in term can promote the retention of URMs. The department’s effort is aligned with the new initiative the university launched to build an inclusive environment. More details of the action items in each area of change that the department has taken to build this culture of engineering with engineers will be shared in the full-length paper. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    