skip to main content


Title: Strong pairing in mixed-dimensional bilayer antiferromagnetic Mott insulators
Abstract Interacting many-body systems in reduced-dimensional settings, such as ladders and few-layer systems, are characterized by enhanced quantum fluctuations. Recently, two-dimensional bilayer systems have sparked considerable interest because they can host unusual phases, including unconventional superconductivity. Here we present a theoretical proposal for realizing high-temperature pairing of fermions in a class of bilayer Hubbard models. We introduce a general and highly efficient pairing mechanism for mobile charge carriers in doped antiferromagnetic Mott insulators. The pairing is caused by the energy that one charge gains when it follows the path created by another charge. We show that this mechanism leads to the formation of highly mobile but tightly bound pairs in the case of mixed-dimensional Fermi–Hubbard bilayer systems. This setting is closely related to the Fermi–Hubbard model believed to capture the physics of copper oxides, and can be realized in currently available ultracold atom experiments.  more » « less
Award ID(s):
2116679
NSF-PAR ID:
10334112
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nature Physics
Volume:
18
Issue:
6
ISSN:
1745-2473
Page Range / eLocation ID:
651 to 656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In two-dimensional electron systems, plasmons are gapless and long-lived collective excitations of propagating charge density oscillations. We study the fluctuation mechanism of plasmon-assisted transport in the regime of electron hydrodynamics. We consider pristine electron liquids where charge fluctuations are thermally induced by viscous stresses and intrinsic currents, while attenuation of plasmons is determined by the Maxwell mechanism of charge relaxation. It is shown that, while the contribution of plasmons to the shear viscosity and thermal conductivity of a Fermi liquid is small, plasmon resonances in the bilayer devices enhance the drag resistance. In systems without Galilean invariance, fluctuation-driven contributions to dissipative coefficients can be described only in terms of hydrodynamic quantities: intrinsic conductivity, viscosity, and plasmon dispersion relation.

     
    more » « less
  2. In strongly correlated quantum materials, the behavior of charge carriers is dominated by strong electron-electron interactions. These can lead to insulating states with spin order, and upon doping to competing ordered states including unconventional superconductivity. The underlying pairing mechanism remains poorly understood however, even in strongly simplified theoretical models. Recent advances in quantum simulation allow to study pairing in paradigmatic settings, e.g. in the t-J t − J and t-J_z t − J z Hamiltonians. Even there, the most basic properties of paired states of only two dopants, such as their dispersion relation and excitation spectra, remain poorly studied in many cases. Here we provide new analytical insights into a possible string-based pairing mechanism of mobile holes in an antiferromagnet. We analyze an effective model of partons connected by a confining string and calculate the spectral properties of bound states. Our model is equally relevant for understanding Hubbard-Mott excitons consisting of a bound doublon-hole pair or confined states of dynamical matter in lattice gauge theories, which motivates our study of different parton statistics. Although an accurate semi-analytic estimation of binding energies is challenging, our theory provides a detailed understanding of the internal structure of pairs. For example, in a range of settings we predict heavy states of immobile pairs with flat-band dispersions - including for the lowest-energy d d -wave pair of fermions. Our findings shed new light on the long-standing question about the origin of pairing and competing orders in high-temperature superconductors. 
    more » « less
  3. Abstract

    A pair-density-wave (PDW) is a superconducting state with an oscillating order parameter. A microscopic mechanism that can give rise to it has been long sought but has not yet been established by any controlled calculation. Here we report a density-matrix renormalization-group (DMRG) study of an effectivet-J-Vmodel, which is equivalent to the Holstein-Hubbard model in a strong-coupling limit, on long two-, four-, and six-leg triangular cylinders. While a state with long-range PDW order is precluded in one dimension, we find strong quasi-long-range PDW order with a divergent PDW susceptibility as well as the spontaneous breaking of time-reversal and inversion symmetries. Despite the strong interactions, the underlying Fermi surfaces and electron pockets around theKand$${K}^{\prime}$$Kpoints in the Brillouin zone can be identified. We conclude that the state is valley-polarized and that the PDW arises from intra-pocket pairing with an incommensurate center of mass momentum. In the two-leg case, the exponential decay of spin correlations and the measured central chargec ≈ 1 are consistent with an unusual realization of a Luther-Emery liquid.

     
    more » « less
  4. Abstract Conventional superconductivity emerges from pairing of charge carriers—electrons or holes—mediated by phonons 1 . In many unconventional superconductors, the pairing mechanism is conjectured to be mediated by magnetic correlations 2 , as captured by models of mobile charges in doped antiferromagnets 3 . However, a precise understanding of the underlying mechanism in real materials is still lacking and has been driving experimental and theoretical research for the past 40 years. Early theoretical studies predicted magnetic-mediated pairing of dopants in ladder systems 4–8 , in which idealized theoretical toy models explained how pairing can emerge despite repulsive interactions 9 . Here we experimentally observe this long-standing theoretical prediction, reporting hole pairing due to magnetic correlations in a quantum gas of ultracold atoms. By engineering doped antiferromagnetic ladders with mixed-dimensional couplings 10 , we suppress Pauli blocking of holes at short length scales. This results in a marked increase in binding energy and decrease in pair size, enabling us to observe pairs of holes predominantly occupying the same rung of the ladder. We find a hole–hole binding energy of the order of the superexchange energy and, upon increased doping, we observe spatial structures in the pair distribution, indicating repulsion between bound hole pairs. By engineering a configuration in which binding is strongly enhanced, we delineate a strategy to increase the critical temperature for superconductivity. 
    more » « less
  5. We show that a quantum many-body system may be controlled by means ofFloquet engineering, i.e., their properties may be controlled andmanipulated by employing periodic driving. We present a concrete drivingscheme that allows control over the nature of mobile units and theamount of diffusion in generic many-body systems. We demonstrate theseideas for the Fermi-Hubbard model, where the drive renders doublyoccupied sites (doublons) the mobile excitations in the system. Inparticular, we show that the amount of diffusion in the system and thelevel of fermion-pairing may be controlled and understood solely interms of the doublon dynamics. We find that under certain circumstancesthe diffusion in 1 1 Dsystems may be eliminated completely for extremely long times. Weconclude our work by generalizing these ideas to generic many-bodysystems. 
    more » « less