skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large-time behavior of solutions of parabolic equations on the real line with convergent initial data III: unstable limit at infinity
Abstract This is a continuation, and conclusion, of our study of bounded solutions u of the semilinear parabolic equation $$u_t=u_{xx}+f(u)$$ u t = u xx + f ( u ) on the real line whose initial data $$u_0=u(\cdot ,0)$$ u 0 = u ( · , 0 ) have finite limits $$\theta ^\pm $$ θ ± as $$x\rightarrow \pm \infty $$ x → ± ∞ . We assume that f is a locally Lipschitz function on $$\mathbb {R}$$ R satisfying minor nondegeneracy conditions. Our goal is to describe the asymptotic behavior of u ( x ,  t ) as $$t\rightarrow \infty $$ t → ∞ . In the first two parts of this series we mainly considered the cases where either $$\theta ^-\ne \theta ^+$$ θ - ≠ θ + ; or $$\theta ^\pm =\theta _0$$ θ ± = θ 0 and $$f(\theta _0)\ne 0$$ f ( θ 0 ) ≠ 0 ; or else $$\theta ^\pm =\theta _0$$ θ ± = θ 0 , $$f(\theta _0)=0$$ f ( θ 0 ) = 0 , and $$\theta _0$$ θ 0 is a stable equilibrium of the equation $${{\dot{\xi }}}=f(\xi )$$ ξ ˙ = f ( ξ ) . In all these cases we proved that the corresponding solution u is quasiconvergent—if bounded—which is to say that all limit profiles of $$u(\cdot ,t)$$ u ( · , t ) as $$t\rightarrow \infty $$ t → ∞ are steady states. The limit profiles, or accumulation points, are taken in $$L^\infty _{loc}(\mathbb {R})$$ L loc ∞ ( R ) . In the present paper, we take on the case that $$\theta ^\pm =\theta _0$$ θ ± = θ 0 , $$f(\theta _0)=0$$ f ( θ 0 ) = 0 , and $$\theta _0$$ θ 0 is an unstable equilibrium of the equation $${{\dot{\xi }}}=f(\xi )$$ ξ ˙ = f ( ξ ) . Our earlier quasiconvergence theorem in this case involved some restrictive technical conditions on the solution, which we now remove. Our sole condition on $$u(\cdot ,t)$$ u ( · , t ) is that it is nonoscillatory (has only finitely many critical points) at some $$t\ge 0$$ t ≥ 0 . Since it is known that oscillatory bounded solutions are not always quasiconvergent, our result is nearly optimal.  more » « less
Award ID(s):
1856491
PAR ID:
10334115
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Partial Differential Equations and Applications
Volume:
3
Issue:
4
ISSN:
2662-2963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Let $$\Delta $$ Δ be a hyperbolic triangle with a fixed area $$\varphi $$ φ . We prove that for all but countably many $$\varphi $$ φ , generic choices of $$\Delta $$ Δ have the property that the group generated by the $$\pi $$ π -rotations about the midpoints of the sides of the triangle admits no nontrivial relations. By contrast, we show for all $$\varphi \in (0,\pi ){\setminus }\mathbb {Q}\pi $$ φ ∈ ( 0 , π ) \ Q π , a dense set of triangles does afford nontrivial relations, which in the generic case map to hyperbolic translations. To establish this fact, we study the deformation space $$\mathfrak {C}_\theta $$ C θ of singular hyperbolic metrics on a torus with a single cone point of angle $$\theta =2(\pi -\varphi )$$ θ = 2 ( π - φ ) , and answer an analogous question for the holonomy map $$\rho _\xi $$ ρ ξ of such a hyperbolic structure $$\xi $$ ξ . In an appendix by Gao, concrete examples of $$\theta $$ θ and $$\xi \in \mathfrak {C}_\theta $$ ξ ∈ C θ are given where the image of each $$\rho _\xi $$ ρ ξ is finitely presented, non-free and torsion-free; in fact, those images will be isomorphic to the fundamental groups of closed hyperbolic 3-manifolds. 
    more » « less
  2. Abstract We consider the following stochastic heat equation$$\begin{aligned} \partial _t u(t,x) = \tfrac{1}{2} \partial ^2_x u(t,x) + b(u(t,x)) + \sigma (u(t,x)) {\dot{W}}(t,x), \end{aligned}$$ t u ( t , x ) = 1 2 x 2 u ( t , x ) + b ( u ( t , x ) ) + σ ( u ( t , x ) ) W ˙ ( t , x ) , defined for$$(t,x)\in (0,\infty )\times {\mathbb {R}}$$ ( t , x ) ( 0 , ) × R , where$${\dot{W}}$$ W ˙ denotes space-time white noise. The function$$\sigma $$ σ is assumed to be positive, bounded, globally Lipschitz, and bounded uniformly away from the origin, and the functionbis assumed to be positive, locally Lipschitz and nondecreasing. We prove that the Osgood condition$$\begin{aligned} \int _1^\infty \frac{\textrm{d}y}{b(y)}<\infty \end{aligned}$$ 1 d y b ( y ) < implies that the solution almost surely blows up everywhere and instantaneously, In other words, the Osgood condition ensures that$$\textrm{P}\{ u(t,x)=\infty \quad \hbox { for all } t>0 \hbox { and } x\in {\mathbb {R}}\}=1.$$ P { u ( t , x ) = for all t > 0 and x R } = 1 . The main ingredients of the proof involve a hitting-time bound for a class of differential inequalities (Remark 3.3), and the study of the spatial growth of stochastic convolutions using techniques from the Malliavin calculus and the Poincaré inequalities that were developed in Chen et al. (Electron J Probab 26:1–37, 2021, J Funct Anal 282(2):109290, 2022). 
    more » « less
  3. We study a class of second-order degenerate linear parabolic equations in divergence form in ( − ∞ , T ) × R + d (-\infty , T) \times {\mathbb {R}}^d_+ with homogeneous Dirichlet boundary condition on ( − ∞ , T ) × ∂ R + d (-\infty , T) \times \partial {\mathbb {R}}^d_+ , where R + d = { x ∈ R d : x d > 0 } {\mathbb {R}}^d_+ = \{x \in {\mathbb {R}}^d: x_d>0\} and T ∈ ( − ∞ , ∞ ] T\in {(-\infty , \infty ]} is given. The coefficient matrices of the equations are the product of μ ( x d ) \mu (x_d) and bounded uniformly elliptic matrices, where μ ( x d ) \mu (x_d) behaves like x d α x_d^\alpha for some given α ∈ ( 0 , 2 ) \alpha \in (0,2) , which are degenerate on the boundary { x d = 0 } \{x_d=0\} of the domain. Our main motivation comes from the analysis of degenerate viscous Hamilton-Jacobi equations. Under a partially VMO assumption on the coefficients, we obtain the well-posedness and regularity of solutions in weighted Sobolev spaces. Our results can be readily extended to systems. 
    more » « less
  4. Abstract: We consider the quadratic Zakharov-Kuznetsov equation $$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$ on $$\Bbb{R}^3$$. A solitary wave solution is given by $Q(x-t,y,z)$, where $$Q$$ is the ground state solution to $$-Q+\Delta Q+Q^2=0$$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $$Q$$ in the energy space, evolves to a solution that, as $$t\to\infty$$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $$x>\delta t-\tan\theta\sqrt{y^2+z^2}$$ for $$0\leq\theta\leq{\pi\over 3}-\delta$$. 
    more » « less
  5. In this paper we derive the best constant for the following L ∞<#comment/> L^{\infty } -type Gagliardo-Nirenberg interpolation inequality ‖<#comment/> u ‖<#comment/> L ∞<#comment/> ≤<#comment/> C q , ∞<#comment/> , p ‖<#comment/> u ‖<#comment/> L q + 1 1 −<#comment/> θ<#comment/> ‖<#comment/> ∇<#comment/> u ‖<#comment/> L p θ<#comment/> , θ<#comment/> = p d d p + ( p −<#comment/> d ) ( q + 1 ) , \begin{equation*} \|u\|_{L^{\infty }}\leq C_{q,\infty ,p} \|u\|^{1-\theta }_{L^{q+1}}\|\nabla u\|^{\theta }_{L^p},\quad \theta =\frac {pd}{dp+(p-d)(q+1)}, \end{equation*} where parameters q q and p p satisfy the conditions p > d ≥<#comment/> 1 p>d\geq 1 , q ≥<#comment/> 0 q\geq 0 . The best constant C q , ∞<#comment/> , p C_{q,\infty ,p} is given by C q , ∞<#comment/> , p = θ<#comment/> −<#comment/> θ<#comment/> p ( 1 −<#comment/> θ<#comment/> ) θ<#comment/> p M c −<#comment/> θ<#comment/> d , M c ∫<#comment/> R d u c , ∞<#comment/> q + 1 d x , \begin{equation*} C_{q,\infty ,p}=\theta ^{-\frac {\theta }{p}}(1-\theta )^{\frac {\theta }{p}}M_c^{-\frac {\theta }{d}},\quad M_c≔\int _{\mathbb {R}^d}u_{c,\infty }^{q+1} dx, \end{equation*} where u c , ∞<#comment/> u_{c,\infty } is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when u = A u c , ∞<#comment/> ( λ<#comment/> ( x −<#comment/> x 0 ) ) u=Au_{c,\infty }(\lambda (x-x_0)) for any real numbers A A , λ<#comment/> > 0 \lambda >0 and x 0 ∈<#comment/> R d x_{0}\in \mathbb {R}^d . In fact, the generalized Lane-Emden equation in R d \mathbb {R}^d contains a delta function as a source and it is a Thomas-Fermi type equation. For q = 0 q=0 or d = 1 d=1 , u c , ∞<#comment/> u_{c,\infty } have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that u c , m →<#comment/> u c , ∞<#comment/> u_{c,m}\to u_{c,\infty } and C q , m , p →<#comment/> C q , ∞<#comment/> , p C_{q,m,p}\to C_{q,\infty ,p} as m →<#comment/> + ∞<#comment/> m\to +\infty for d = 1 d=1 , where u c , m u_{c,m} and C q , m , p C_{q,m,p} are the function achieving equality and the best constant of L m L^m -type Gagliardo-Nirenberg interpolation inequality, respectively. 
    more » « less