skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metallicity Distribution Function of the Eridanus II Ultra-faint Dwarf Galaxy from Hubble Space Telescope Narrowband Imaging
Abstract We use deep narrowband CaHK (F395N) imaging taken with the Hubble Space Telescope (HST) to construct the metallicity distribution function (MDF) of Local Group ultra-faint dwarf galaxy Eridanus II (Eri II ). When combined with archival F475W and F814W data, we measure metallicities for 60 resolved red giant branch stars as faint as m F475W ∼ 24 mag, a factor of ∼4× more stars than current spectroscopic MDF determinations. We find that Eri II has a mean metallicity of [Fe/H] = −2.50 − 0.07 + 0.07 and a dispersion of σ [ Fe / H ] = 0.42 − 0.06 + 0.06 , which are consistent with spectroscopic MDFs, though more precisely constrained owing to a larger sample. We identify a handful of extremely metal-poor star candidates (EMP; [Fe/H] < −3) that are marginally bright enough for spectroscopic follow-up. The MDF of Eri II appears well described by a leaky box chemical evolution model. We also compute an updated orbital history for Eri II using Gaia eDR3 proper motions, and find that it is likely on first infall into the Milky Way. Our findings suggest that Eri II underwent an evolutionary history similar to that of an isolated galaxy. Compared to MDFs for select cosmological simulations of similar mass galaxies, we find that Eri II has a lower fraction of stars with [Fe/H] < −3, though such comparisons should currently be treated with caution due to a paucity of simulations, selection effects, and known limitations of CaHK for EMPs. This study demonstrates the power of deep HST CaHK imaging for measuring the MDFs of UFDs.  more » « less
Award ID(s):
1910346 1752913
PAR ID:
10334132
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
925
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present novel constraints on the underlying galaxy formation physics (e.g. mass-loading factor, star formation history, and metal retention) at z ≳ 7 for the low-mass (M* ∼ 105 M⊙) Local Group ultrafaint dwarf galaxy (UFD) Eridanus ii (Eri ii). Using a hierarchical Bayesian framework, we apply a one-zone chemical evolution model to Eri ii’s CaHK-based photometric metallicity distribution function (MDF; [Fe/H]) and find that the evolution of Eri ii is well characterized by a short, exponentially declining star formation history ($$\tau _\text{SFH}=0.39\pm _{0.13}^{0.18}$$ Gyr), a low star formation efficiency ($$\tau _\text{SFE}=27.56\pm _{12.92}^{25.14}$$ Gyr), and a large mass-loading factor ($$\eta =194.53\pm _{42.67}^{33.37}$$). Our results are consistent with Eri ii forming the majority of its stars before the end of reionization. The large mass-loading factor implies strong outflows in the early history of Eri ii and is in good agreement with theoretical predictions for the mass scaling of galactic winds. It also results in the ejection of >90 per cent of the metals produced in Eri ii. We make predictions for the distribution of [Mg/Fe]–[Fe/H] in Eri ii as well as the prevalence of ultra metal-poor stars, both of which can be tested by future chemical abundance measurements. Spectroscopic follow-up of the highest metallicity stars in Eri ii ([Fe/H] > −2) will greatly improve model constraints. Our new framework can readily be applied to all UFDs throughout the Local Group, providing new insights into the underlying physics governing the evolution of the faintest galaxies in the reionization era. 
    more » « less
  2. Abstract The metallicity distribution function (MDF) and internal chemical variations of a galaxy are fundamental to understand its formation and assembly history. In this work, we analyze photometric metallicities for 3883 stars over 7 half-light radii (rh) in the Sculptor (Scl) dwarf spheroidal (dSph) galaxy, using new narrowband imaging data from the Mapping the Ancient Galaxy in CaHK (MAGIC) survey conducted with the Dark Energy Camera (DECam) at the 4 m Blanco Telescope. This work demonstrates the scientific potential of MAGIC using the Scl dSph galaxy, one of the most well-studied satellites of the Milky Way. Our sample ranges from [Fe/H] ≈ –4.0 to [Fe/H] ≈ –0.6, includes six new extremely metal-poor candidates ([Fe/H] ≤ –3.0), and is almost 3 times larger than the largest spectroscopic metallicity data set in the Scl dSph. Our spatially unbiased sample of metallicities provides a more accurate representation of the MDF, revealing a more metal-rich peak than observed in the most recent spectroscopic sample. It also reveals a break in the metallicity gradient, with a strong change in the slope: from −3.26 ± 0.18 dex deg−1for stars inside ∼1rhto −0.55 ± 0.26 dex deg−1for the outer part of the Scl dSph. Our study demonstrates that combining photometric metallicity analysis with the wide field of view of DECam offers an efficient and unbiased approach for studying the stellar populations of dwarf galaxies in the Local Group. 
    more » « less
  3. Abstract We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV= −7.5) and Andromeda XXVIII (MV= –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure [Fe/H] = 2.17 0.05 + 0.05 , σ [Fe/H] = 0.33 0.07 + 0.07 , and ∇[Fe/H]= −0.23 ± 0.15 dex R e 1 . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure [Fe/H] = 1.95 0.04 + 0.04 , σ [Fe/H] = 0.34 0.05 + 0.05 , and ∇[Fe/H]= −0.46 ± 0.10 dex R e 1 , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L≲ 106L) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s. 
    more » « less
  4. Abstract We measure the metallicities of 374 red giant branch (RGB) stars in the isolated, quenched dwarf galaxy Tucana using Hubble Space Telescope narrowband (F395N) calcium H and K imaging. Our sample is a factor of ∼7 larger than what is available from previous studies. Our main findings are as follows. (i) A global metallicity distribution function (MDF) with [Fe/H] = 1.55 0.04 + 0.04 and σ [Fe/H] = 0.54 0.03 + 0.03 . (ii) A metallicity gradient of −0.54 ± 0.07 dex R e 1 (−2.1 ± 0.3 dex kpc−1) over the extent of our imaging (∼2.5Re), which is steeper than literature measurements. Our finding is consistent with predicted gradients from the publicly available FIRE-2 simulations, in which bursty star formation creates stellar population gradients and dark matter cores. (iii) Tucana’s bifurcated RGB has distinct metallicities: a blue RGB with [Fe/H] = 1.78 0.06 + 0.06 and σ [Fe/H] = 0.44 0.06 + 0.07 and a red RGB with [Fe/H] = 1.08 0.07 + 0.07 and σ [Fe/H] = 0.42 0.06 + 0.06 . (iv) At fixed stellar mass, Tucana is more metal-rich than Milky Way satellites by ∼0.4 dex, but its blue RGB is chemically comparable to the satellites. Tucana’s MDF appears consistent with star-forming isolated dwarfs, though MDFs of the latter are not as well populated. (v) About 2% of Tucana’s stars have [Fe/H] < −3% and 20% have [Fe/H] > −1. We provide a catalog for community spectroscopic follow-up. 
    more » « less
  5. ABSTRACT Recently, a new cylindrical-shaped stream of stars up to 700 pc long was discovered hiding in the Galactic disc using kinematic data enabled by the Gaia mission. This stream of stars, dubbed Pisces–Eridanus (Psc–Eri), was initially thought to be as old as 1 Gyr, yet its stars shared a rotation period distribution consistent with a population that was 120 Myr old. Here, we explore the detailed chemical nature of this stellar stream. We carried out high-resolution spectroscopic follow-up of 42 Psc–Eri stars using McDonald Observatory and combined these data with information for 40 members observed with the low-resolution LAMOST spectroscopic survey. Together, these data enabled us to measure the abundance distribution of light/odd-Z (Li, Na, Al, Sc, V), α (Mg, Si, Ca, Ti), Fe-peak (Cr, Mn, Fe, Co, Ni, Zn), and neutron capture (Sr, Y, Zr, Ba, La, Nd, Eu) elements along the Psc–Eri stream. We find that the stream is (1) near-solar metallicity with [Fe/H] = –0.03 dex and (2) has a metallicity spread of 0.07 dex (or 0.04 dex when outliers are excluded). We also find that (3) the abundance of Li indicates that Psc–Eri is ∼120 Myr old, consistent with its gyrochronology age. Additionally, Psc–Eri has (4) [X/Fe] abundance spreads that are just larger than the typical uncertainty in most elements, (5) it is a cylindrical-like system whose outer edges rotate about the centre, and (6) no significant abundance gradients along its major axis except a potentially weak gradient in [Si/Fe]. These results show that Psc–Eri is a uniquely close young chemically interesting laboratory for testing our understanding of star and planet formation. 
    more » « less