skip to main content


Title: Household and climate factors influence Aedes aegypti presence in the arid city of Huaquillas, Ecuador
Arboviruses transmitted by Aedes aegypti (e.g., dengue, chikungunya, Zika) are of major public health concern on the arid coastal border of Ecuador and Peru. This high transit border is a critical disease surveillance site due to human movement-associated risk of transmission. Local level studies are thus integral to capturing the dynamics and distribution of vector populations and social-ecological drivers of risk, to inform targeted public health interventions. Our study examines factors associated with household-level Ae . aegypti presence in Huaquillas, Ecuador, while accounting for spatial and temporal effects. From January to May of 2017, adult mosquitoes were collected from a cohort of households (n = 63) in clusters (n = 10), across the city of Huaquillas, using aspirator backpacks. Household surveys describing housing conditions, demographics, economics, travel, disease prevention, and city services were conducted by local enumerators. This study was conducted during the normal arbovirus transmission season (January—May), but during an exceptionally dry year. Household level Ae . aegypti presence peaked in February, and counts were highest in weeks with high temperatures and a week after increased rainfall. Univariate analyses with proportional odds logistic regression were used to explore household social-ecological variables and female Ae . aegypti presence. We found that homes were more likely to have Ae . aegypti when households had interruptions in piped water service. Ae . aegypti presence was less likely in households with septic systems. Based on our findings, infrastructure access and seasonal climate are important considerations for vector control in this city, and even in dry years, the arid environment of Huaquillas supports Ae . aegypti breeding habitat.  more » « less
Award ID(s):
2011147
NSF-PAR ID:
10334200
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Barrera, Roberto
Date Published:
Journal Name:
PLOS Neglected Tropical Diseases
Volume:
15
Issue:
11
ISSN:
1935-2735
Page Range / eLocation ID:
e0009931
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    TheAedesaegyptimosquito is a vector of several viruses including dengue, chikungunya, zika, and yellow fever. Vector surveillance and control are the primary methods used for the control and prevention of disease transmission; however, public health institutions largely rely on measures of population abundance as a trigger for initiating control activities. Previous research found evidence that at the northern edge ofAe.aegypti’s geographic range, survival, rather than abundance, is likely to be the factor limiting disease transmission. In this study, we sought to test the utility of using body size as an entomological index to surveil changes in the age structure of field-collected femaleAedesaegypti.

    Methods

    We collected femaleAe.aegyptimosquitoes using BG sentinel traps in three cities at the northern edge of their geographic range. Collections took place during their active season over the course of 3 years. Female wing size was measured as an estimate of body size, and reproductive status was characterized by examining ovary tracheation. Chronological age was determined by measuring transcript abundance of an age-dependent gene. These data were then tested with female abundance at each site and weather data from the estimated larval development period and adulthood (1 week prior to capture). Two sources of weather data were tested to determine which was more appropriate for evaluating impacts on mosquito physiology. All variables were then used to parameterize structural equation models to predict age.

    Results

    In comparing city-specific NOAA weather data and site-specific data from HOBO remote temperature and humidity loggers, we found that HOBO data were more tightly associated with body size. This information is useful for justifying the cost of more precise weather monitoring when studying intra-population heterogeneity of eco-physiological factors. We found that body size itself was not significantly associated with age. Of all the variables measured, we found that best fitting model for age included temperature during development, body size, female abundance, and relative humidity in the 1 week prior to capture . The strength of models improved drastically when testing one city at a time, with Hermosillo (the only study city with seasonal dengue transmission) having the best fitting model for age. Despite our finding that there was a bias in the body size of mosquitoes collected alive from the BG sentinel traps that favored large females, there was still sufficient variation in the size of females collected alive to show that inclusion of this entomological indicator improved the predictive capacity of our models.

    Conclusions

    Inclusion of body size data increased the strength of weather-based models for age. Importantly, we found that variation in age was greater within cities than between cities, suggesting that modeling of age must be made on a city-by-city basis. These results contribute to efforts to use weather forecasts to predict changes in the probability of disease transmission by mosquito vectors.

    Graphical abstract 
    more » « less
  2. Abstract Background

    Effectively controlling heartworm disease—a major parasitic disease threatening animal health in the US and globally—requires understanding the local ecology of mosquito vectors involved in transmission. However, the key vector species in a given region are often unknown and challenging to identify. Here we investigate (i) the key vector species associated with transmission of the parasite,Dirofilaria immitis, in California and (ii) the climate and land cover drivers of vector presence.

    Methods

    To identify key mosquito vectors involved in transmission, we incorporated long-term, finely resolved mosquito surveillance data and dog heartworm case data in a statistical modeling approach (fixed-effects regression) that rigorously controls for other unobserved drivers of heartworm cases. We then used a flexible machine learning approach (gradient boosted machines) to identify the climate and land cover variables associated with the presence of each species.

    Results

    We found significant, regionally specific, positive associations between dog heartworm cases and the abundance of four vector species:Aedes aegypti(Central California),Ae. albopictus(Southern California),Ae. sierrensis(Central California), andCuliseta incidens(Northern and Central California). The proportion of developed land cover was one of the most important ecological variables predicting the presence or absence of the putative vector species.

    Conclusion

    Our results implicate three previously under-recognized vectors of dog heartworm transmission in California and indicate the land cover types in which each putative vector species is commonly found. Efforts to target these species could prioritize surveillance in these land cover types (e.g. near human dwellings in less urbanized settings forAe. albopictusandCs. incidens) but further investigation on the natural infection prevalence and host-biting rates of these species, as well as the other local vectors, is needed.

    Graphical Abstract 
    more » « less
  3. ABSTRACT

    Within the contiguous USA, Florida is unique in having tropical and subtropical climates, a great abundance and diversity of mosquito vectors, and high rates of human travel. These factors contribute to the state being the national ground zero for exotic mosquito-borne diseases, as evidenced by local transmission of viruses spread by Aedes aegypti, including outbreaks of dengue in 2022 and Zika in 2016. Because of limited treatment options, integrated vector management is a key part of mitigating these arboviruses. Practical knowledge of when and where mosquito populations of interest exist is critical for surveillance and control efforts, and habitat predictions at various geographic scales typically rely on ecological niche modeling. However, most of these models, usually created in partnership with academic institutions, demand resources that otherwise may be too time-demanding or difficult for mosquito control programs to replicate and use effectively. Such resources may include intensive computational requirements, high spatiotemporal resolutions of data not regularly available, and/or expert knowledge of statistical analysis. Therefore, our study aims to partner with mosquito control agencies in generating operationally useful mosquito abundance models. Given the increasing threat of mosquito-borne disease transmission in Florida, our analytic approach targets recent Ae. aegypti abundance in the Tampa Bay area. We investigate explanatory variables that: 1) are publicly available, 2) require little to no preprocessing for use, and 3) are known factors associated with Ae. aegypti ecology. Out of our 4 final models, none required more than 5 out of the 36 predictors assessed (13.9%). Similar to previous literature, the strongest predictors were consistently 3- and 4-wk temperature and precipitation lags, followed closely by 1 of 2 environmental predictors: land use/land cover or normalized difference vegetation index. Surprisingly, 3 of our 4 final models included one or more socioeconomic or demographic predictors. In general, larger sample sizes of trap collections and/or citizen science observations should result in greater confidence in model predictions and validation. However, given disparities in trap collections across jurisdictions, individual county models rather than a multicounty conglomerate model would likely yield stronger model fits. Ultimately, we hope that the results of our assessment will enable more accurate and precise mosquito surveillance and control of Ae. aegypti in Florida and beyond.

     
    more » « less
  4. null (Ed.)
    Abstract Background Water resources development promotes agricultural expansion and food security. But are these benefits offset by increased infectious disease risk? Dam construction on the Senegal River in 1986 was followed by agricultural expansion and increased transmission of human schistosomes. Yet the mechanisms linking these two processes at the individual and household levels remain unclear. We investigated the association between household land use and schistosome infection in children. Methods We analyzed cross-sectional household survey data ( n  = 655) collected in 16 rural villages in August 2016  across demographic, socio-economic and land use dimensions, which were matched to Schistosoma haematobium ( n  = 1232) and S. mansoni ( n  = 1222) infection data collected from school-aged children. Mixed effects regression determined the relationship between irrigated area and schistosome infection presence and intensity. Results Controlling for socio-economic and demographic risk factors, irrigated area cultivated by a household was associated with an increase in the presence of S. haematobium infection (odds ratio [ OR ] = 1.14; 95% confidence interval [95% CI ]: 1.03–1.28) but not S. mansoni infection ( OR  = 1.02; 95% CI : 0.93–1.11). Associations between infection intensity and irrigated area were positive but imprecise ( S. haematobium: rate ratio [ RR ] = 1.05; 95% CI : 0.98–1.13, S. mansoni : RR  = 1.09; 95% CI : 0.89–1.32). Conclusions Household engagement in irrigated agriculture increases individual risk of S. haematobium but not S. mansoni infection. Increased contact with irrigated landscapes likely drives exposure, with greater impacts on households relying on agricultural livelihoods. 
    more » « less
  5. Abstract

    Most models exploring the effects of climate change on mosquito‐borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, “one size fits all” models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature inAedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses. First, to explore whether there is any difference in existing thermal response of mosquitoes between populations, we used a thermal knockdown assay to examine five populations ofAe. aegypticollected from climatically diverse locations in Mexico, together with a long‐standing laboratory strain. We identified significant phenotypic variation in thermal tolerance between populations. Next, to explore whether such variation can be generated by differences in temperature, we conducted an experimental passage study by establishing six replicate lines from a single field‐derived population ofAe. aegyptifrom Mexico, maintaining half at 27°C and the other half at 31°C. After 10 generations, we found a significant difference in mosquito performance, with the lines maintained under elevated temperatures showing greater thermal tolerance. Moreover, these differences in thermal tolerance translated to shifts in the thermal performance curves for multiple life‐history traits, leading to differences in overall fitness. Together, these novel findings provide compelling evidence thatAe. aegyptipopulations can and do differ in thermal response, suggesting that simplified thermal performance models might be insufficient for predicting the effects of climate on vector‐borne disease transmission.

     
    more » « less