Abstract BackgroundEffectively controlling heartworm disease—a major parasitic disease threatening animal health in the US and globally—requires understanding the local ecology of mosquito vectors involved in transmission. However, the key vector species in a given region are often unknown and challenging to identify. Here we investigate (i) the key vector species associated with transmission of the parasite,Dirofilaria immitis, in California and (ii) the climate and land cover drivers of vector presence. MethodsTo identify key mosquito vectors involved in transmission, we incorporated long-term, finely resolved mosquito surveillance data and dog heartworm case data in a statistical modeling approach (fixed-effects regression) that rigorously controls for other unobserved drivers of heartworm cases. We then used a flexible machine learning approach (gradient boosted machines) to identify the climate and land cover variables associated with the presence of each species. ResultsWe found significant, regionally specific, positive associations between dog heartworm cases and the abundance of four vector species:Aedes aegypti(Central California),Ae. albopictus(Southern California),Ae. sierrensis(Central California), andCuliseta incidens(Northern and Central California). The proportion of developed land cover was one of the most important ecological variables predicting the presence or absence of the putative vector species. ConclusionOur results implicate three previously under-recognized vectors of dog heartworm transmission in California and indicate the land cover types in which each putative vector species is commonly found. Efforts to target these species could prioritize surveillance in these land cover types (e.g. near human dwellings in less urbanized settings forAe. albopictusandCs. incidens) but further investigation on the natural infection prevalence and host-biting rates of these species, as well as the other local vectors, is needed. Graphical Abstract 
                        more » 
                        « less   
                    
                            
                            Household and climate factors influence Aedes aegypti presence in the arid city of Huaquillas, Ecuador
                        
                    
    
            Arboviruses transmitted by Aedes aegypti (e.g., dengue, chikungunya, Zika) are of major public health concern on the arid coastal border of Ecuador and Peru. This high transit border is a critical disease surveillance site due to human movement-associated risk of transmission. Local level studies are thus integral to capturing the dynamics and distribution of vector populations and social-ecological drivers of risk, to inform targeted public health interventions. Our study examines factors associated with household-level Ae . aegypti presence in Huaquillas, Ecuador, while accounting for spatial and temporal effects. From January to May of 2017, adult mosquitoes were collected from a cohort of households (n = 63) in clusters (n = 10), across the city of Huaquillas, using aspirator backpacks. Household surveys describing housing conditions, demographics, economics, travel, disease prevention, and city services were conducted by local enumerators. This study was conducted during the normal arbovirus transmission season (January—May), but during an exceptionally dry year. Household level Ae . aegypti presence peaked in February, and counts were highest in weeks with high temperatures and a week after increased rainfall. Univariate analyses with proportional odds logistic regression were used to explore household social-ecological variables and female Ae . aegypti presence. We found that homes were more likely to have Ae . aegypti when households had interruptions in piped water service. Ae . aegypti presence was less likely in households with septic systems. Based on our findings, infrastructure access and seasonal climate are important considerations for vector control in this city, and even in dry years, the arid environment of Huaquillas supports Ae . aegypti breeding habitat. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2011147
- PAR ID:
- 10334200
- Editor(s):
- Barrera, Roberto
- Date Published:
- Journal Name:
- PLOS Neglected Tropical Diseases
- Volume:
- 15
- Issue:
- 11
- ISSN:
- 1935-2735
- Page Range / eLocation ID:
- e0009931
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Most vector control activities in urban areas are focused on household environments; however, information relating to infection risks in spaces other than households is poor, and the relative risk that these spaces represent has not yet been fully understood. We used data-driven simulations to investigate the importance of household and non-household environments for dengue entomological risk in two Kenyan cities where dengue circulation has been reported. Fieldwork was performed using four strategies that targeted different stages of mosquitoes: ovitraps, larval collections, Prokopack aspiration, and BG-sentinel traps. Data were analyzed separately between household and non-household environments to assess mosquito presence, the number of vectors collected, and the risk factors for vector presence. With these data, we simulated vector and human populations to estimate the parameter m and mosquito-to-human density in both household and non-household environments. Among the analyzed variables, the main difference was found in mosquito abundance, which was consistently higher in non-household environments in Kisumu but was similar in Ukunda. Risk factor analysis suggests that small, clean water-related containers serve as mosquito breeding places in households as opposed to the trash- and rainfall-related containers found in non-household structures. We found that the density of vectors (m) was higher in non-household than household environments in Kisumu and was also similar or slightly lower between both environments in Ukunda. These results suggest that because vectors are abundant, there is a potential risk of transmission in non-household environments; hence, vector control activities should take these spaces into account.more » « less
- 
            ika virus is an emerging arbovirus of humans in the western hemisphere. With its potential spread into new geographical areas, it is important to define the vector competence of native mosquito species. We tested the vector competency of Aedes vexans (Meigen) from the Lake Agassiz Plain of northwestern Minnesota and northeastern North Dakota. Aedes aegypti (L.) was used as a positive control for comparison. Mosquitoes were fed blood containing Zika virus and 2 wk later were tested for viral infection and dissemination. Aedes vexans (n = 60) were susceptible to midgut infection (28% infection rate) but displayed a fairly restrictive midgut escape barrier (3% dissemination rate). Cofed Ae. aegypti (n = 22) displayed significantly higher rates of midgut infection (61%) and dissemination (22%). To test virus transmission, mosquitoes were inoculated with virus and 16-17 d later, tested for their ability to transmit virus into fluid-filled capillary tubes. Unexpectedly, the transmission rate was significantly higher for Ae. vexans (34%, n = 47) than for Ae. aegypti (5%, n = 22). The overall transmission potential for Ae. vexans to transmit Zika virus was 1%. Because of its wide geographic distribution, often extreme abundance, and aggressive human biting activity, Ae. vexans could serve as a potential vector for Zika virus in northern latitudes where the conventional vectors, Ae. aegypti and Ae. albopictus Skuse, cannot survive. However, Zika virus is a primate virus and humans are the only amplifying host species in northern latitudes. To serve as a vector of Zika virus, Ae. vexans must feed repeatedly on humans. Defining the propensity of Ae. vexans to feed repeatedly on humans will be key to understanding its role as a potential vector of Zika virus.more » « less
- 
            Context Land use change and deforestation drive both biodiversity loss and zoonotic disease transmission in tropical countrysides. For mosquito communities that can include disease vectors, forest loss has been linked to reduced biodiversity and increased vector presence. The spatial scales at which land use and tree cover shape mosquito communities present a knowledge gap relevant to both biodiversity and public health. Objectives We investigated the responses of mosquito species richness and Aedes albopictus disease vector presence to land use and to tree cover surrounding survey sites at different spatial scales. We also investigated species compositional turnover across land uses and along environmental gradients. Methods We paired a field survey of mosquito communities in agricultural, residential, and forested lands in rural southern Costa Rica with remotely sensed tree cover data. We compared mosquito richness and vector presence responses to tree cover measured across scales from 30 to 1000 m, and across land uses. We analyzed mosquito community compositional turnover between land uses and along environmental gradients of tree cover, temperature, elevation, and geographic distance. Results Tree cover was both positively correlated with mosquito species richness and negatively correlated with the presence of the common invasive dengue vector Ae. albopictus at small spatial scales of 90–250 m. Land use predicted community composition and Ae. albopictus presence. Conclusions The results suggest that local tree cover preservation and expansion can support mosquito species richness and reduce disease vector presence. The identified spatial range at which tree cover shapes mosquito communities can inform the development of land management practices to protect both ecosystem and public health.more » « less
- 
            Morrison, Amy C (Ed.)The Zika virus epidemic of 2015–16, which caused over 1 million confirmed or suspected human cases in the Caribbean and Latin America, was driven by a combination of movement of infected humans and availability of suitable habitat for mosquito species that are key disease vectors. Both human mobility and mosquito vector abundances vary seasonally, and the goal of our research was to analyze the interacting effects of disease vector densities and human movement across metapopulations on disease transmission intensity and the probability of super-spreader events. Our research uses the novel approach of combining geographical modeling of mosquito presence with network modeling of human mobility to offer a comprehensive simulation environment for Zika virus epidemics that considers a substantial number of spatial and temporal factors compared to the literature. Specifically, we tested the hypotheses that 1) regions with the highest probability of mosquito presence will have more super-spreader events during dry months, when mosquitoes are predicted to be more abundant, 2) regions reliant on tourism industries will have more super-spreader events during wet months, when they are more likely to contribute to network-level pathogen spread due to increased travel. We used the case study of Colombia, a country with a population of about 50 million people, with an annual calendar that can be partitioned into overlapping cycles of wet and dry seasons and peak tourism and off tourism seasons that drive distinct cyclical patterns of mosquito abundance and human movement. Our results show that whether the first infected human was introduced to the network during the wet versus dry season and during the tourism versus off tourism season profoundly affects the severity and trajectory of the epidemic. For example, Zika virus was first detected in Colombia in October of 2015. Had it originated in January, a dry season month with high rates of tourism, it likely could have infected up to 60% more individuals and up to 40% more super-spreader events may have occurred. In addition, popular tourism destinations such as Barranquilla and Cartagena have the highest risk of super-spreader events during the winter, whereas densely populated areas such as Medellín and Bogotá are at higher risk of sustained transmission during dry months in the summer. Our research demonstrates that public health planning and response to vector-borne disease outbreaks requires a thorough understanding of how vector and host patterns vary due to seasonality in environmental conditions and human mobility dynamics. This research also has strong implications for tourism policy and the potential response strategies in case of an emergent epidemic.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    