skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 6, 2025

Title: The effects of seasonal human mobility and Aedes aegypti habitat suitability on Zika virus epidemic severity in Colombia
The Zika virus epidemic of 2015–16, which caused over 1 million confirmed or suspected human cases in the Caribbean and Latin America, was driven by a combination of movement of infected humans and availability of suitable habitat for mosquito species that are key disease vectors. Both human mobility and mosquito vector abundances vary seasonally, and the goal of our research was to analyze the interacting effects of disease vector densities and human movement across metapopulations on disease transmission intensity and the probability of super-spreader events. Our research uses the novel approach of combining geographical modeling of mosquito presence with network modeling of human mobility to offer a comprehensive simulation environment for Zika virus epidemics that considers a substantial number of spatial and temporal factors compared to the literature. Specifically, we tested the hypotheses that 1) regions with the highest probability of mosquito presence will have more super-spreader events during dry months, when mosquitoes are predicted to be more abundant, 2) regions reliant on tourism industries will have more super-spreader events during wet months, when they are more likely to contribute to network-level pathogen spread due to increased travel. We used the case study of Colombia, a country with a population of about 50 million people, with an annual calendar that can be partitioned into overlapping cycles of wet and dry seasons and peak tourism and off tourism seasons that drive distinct cyclical patterns of mosquito abundance and human movement. Our results show that whether the first infected human was introduced to the network during the wet versus dry season and during the tourism versus off tourism season profoundly affects the severity and trajectory of the epidemic. For example, Zika virus was first detected in Colombia in October of 2015. Had it originated in January, a dry season month with high rates of tourism, it likely could have infected up to 60% more individuals and up to 40% more super-spreader events may have occurred. In addition, popular tourism destinations such as Barranquilla and Cartagena have the highest risk of super-spreader events during the winter, whereas densely populated areas such as Medellín and Bogotá are at higher risk of sustained transmission during dry months in the summer. Our research demonstrates that public health planning and response to vector-borne disease outbreaks requires a thorough understanding of how vector and host patterns vary due to seasonality in environmental conditions and human mobility dynamics. This research also has strong implications for tourism policy and the potential response strategies in case of an emergent epidemic.  more » « less
Award ID(s):
2408904
PAR ID:
10566984
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Morrison, Amy C
Publisher / Repository:
Public Library of Science
Date Published:
Journal Name:
PLOS Neglected Tropical Diseases
Volume:
18
Issue:
11
ISSN:
1935-2735
Page Range / eLocation ID:
e0012571
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Brackney, Doug E. (Ed.)
    The globalization of mosquito-borne arboviral diseases has placed more than half of the human population at risk. Understanding arbovirus ecology, including the role individual mosquito species play in virus transmission cycles, is critical for limiting disease. Canonical virus-vector groupings, such as Aedes - or Culex -associated flaviviruses, have historically been defined using virus detection in field-collected mosquitoes, mosquito feeding patterns, and vector competence, which quantifies the intrinsic ability of a mosquito to become infected with and transmit a virus during a subsequent blood feed. Herein, we quantitatively synthesize data from 68 laboratory-based vector competence studies of 111 mosquito-virus pairings of Australian mosquito species and viruses of public health concern to further substantiate existing canonical vector-virus groupings and quantify variation within these groupings. Our synthesis reinforces current canonical vector-virus groupings but reveals substantial variation within them. While Aedes species were generally the most competent vectors of canonical “ Aedes -associated flaviviruses” (such as dengue, Zika, and yellow fever viruses), there are some notable exceptions; for example, Aedes notoscriptus is an incompetent vector of dengue viruses. Culex spp. were the most competent vectors of many traditionally Culex -associated flaviviruses including West Nile, Japanese encephalitis and Murray Valley encephalitis viruses, although some Aedes spp. are also moderately competent vectors of these viruses. Conversely, many different mosquito genera were associated with the transmission of the arthritogenic alphaviruses, Ross River, Barmah Forest, and chikungunya viruses. We also confirm that vector competence is impacted by multiple barriers to infection and transmission within the mesenteron and salivary glands of the mosquito. Although these barriers represent important bottlenecks, species that were susceptible to infection with a virus were often likely to transmit it. Importantly, this synthesis provides essential information on what species need to be targeted in mosquito control programs. 
    more » « less
  2. Abstract Two 2017 experiments with a U.S. national opportunity sample tested effects of location, psychological distance (PD), and exposure to location‐related information on Americans’ Zika risk views and behavioral intentions. Location—distance from mosquito transmission of the virus in Florida and Texas; residence within states with 100+ Zika infections; residence within potential mosquito vector ranges—had small, inconsistent effects. Hazard proximity weakly enhanced personal risk judgments and concern about Zika transmission locally. It also increased psychological proximity, and intentions of mosquito control, avoiding travel to Zika‐infected areas, and practicing safe sex. PD—particularly social and geographical distance, followed by temporal distance, with few effects for uncertainty—modestly and inconsistently decreased risk views and intentions. Exposure to location‐related information from the U.S. Centers for Disease Control and Prevention website—naming states with 100+ Zika cases; maps of potential mosquito vector habitat—increased risk views and psychological closeness, but not intentions; maps had slightly stronger if inconsistent effects versus prevalence information. Structural equation modeling (SEM) of a location > PD > risk views > intention path explained modest variance in intentions. This varied in degree and kind (e.g., which location measures were significant) across behaviors, and between pre‐ and postinformation exposure analyses. These results suggest need for both theoretical and measurement advances regarding effects of location and PD on risk views and behavior. PD mediates location effects on risk views. Online background information, like that used here, will not enhance protective behavior without explicitly focused communication and perhaps higher objective risk. 
    more » « less
  3. Christofferson, Rebecca C. (Ed.)
    Background The COVID-19 pandemic has induced unprecedented reductions in human mobility and social contacts throughout the world. Because dengue virus (DENV) transmission is strongly driven by human mobility, behavioral changes associated with the pandemic have been hypothesized to impact dengue incidence. By discouraging human contact, COVID-19 control measures have also disrupted dengue vector control interventions, the most effective of which require entry into homes. We sought to investigate how and why dengue incidence could differ under a lockdown scenario with a proportion of the population sheltered at home. Methodology & principal findings We used an agent-based model with a realistic treatment of human mobility and vector control. We found that a lockdown in which 70% of the population sheltered at home and which occurred in a season when a new serotype invaded could lead to a small average increase in cumulative DENV infections of up to 10%, depending on the time of year lockdown occurred. Lockdown had a more pronounced effect on the spatial distribution of DENV infections, with higher incidence under lockdown in regions with higher mosquito abundance. Transmission was also more focused in homes following lockdown. The proportion of people infected in their own home rose from 54% under normal conditions to 66% under lockdown, and the household secondary attack rate rose from 0.109 to 0.128, a 17% increase. When we considered that lockdown measures could disrupt regular, city-wide vector control campaigns, the increase in incidence was more pronounced than with lockdown alone, especially if lockdown occurred at the optimal time for vector control. Conclusions & significance Our results indicate that an unintended outcome of lockdown measures may be to adversely alter the epidemiology of dengue. This observation has important implications for an improved understanding of dengue epidemiology and effective application of dengue vector control. When coordinating public health responses during a syndemic, it is important to monitor multiple infections and understand that an intervention against one disease may exacerbate another. 
    more » « less
  4. ika virus is an emerging arbovirus of humans in the western hemisphere. With its potential spread into new geographical areas, it is important to define the vector competence of native mosquito species. We tested the vector competency of Aedes vexans (Meigen) from the Lake Agassiz Plain of northwestern Minnesota and northeastern North Dakota. Aedes aegypti (L.) was used as a positive control for comparison. Mosquitoes were fed blood containing Zika virus and 2 wk later were tested for viral infection and dissemination. Aedes vexans (n = 60) were susceptible to midgut infection (28% infection rate) but displayed a fairly restrictive midgut escape barrier (3% dissemination rate). Cofed Ae. aegypti (n = 22) displayed significantly higher rates of midgut infection (61%) and dissemination (22%). To test virus transmission, mosquitoes were inoculated with virus and 16-17 d later, tested for their ability to transmit virus into fluid-filled capillary tubes. Unexpectedly, the transmission rate was significantly higher for Ae. vexans (34%, n = 47) than for Ae. aegypti (5%, n = 22). The overall transmission potential for Ae. vexans to transmit Zika virus was 1%. Because of its wide geographic distribution, often extreme abundance, and aggressive human biting activity, Ae. vexans could serve as a potential vector for Zika virus in northern latitudes where the conventional vectors, Ae. aegypti and Ae. albopictus Skuse, cannot survive. However, Zika virus is a primate virus and humans are the only amplifying host species in northern latitudes. To serve as a vector of Zika virus, Ae. vexans must feed repeatedly on humans. Defining the propensity of Ae. vexans to feed repeatedly on humans will be key to understanding its role as a potential vector of Zika virus. 
    more » « less
  5. null (Ed.)
    Abstract Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28–85% for vectors, 44–88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections. 
    more » « less