skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ReasonBERT: Pre-trained to Reason with Distant Supervision
We present ReasonBert, a pre-training method that augments language models with the ability to reason over long-range relations and multiple, possibly hybrid contexts. Unlike existing pre-training methods that only harvest learning signals from local contexts of naturally occurring texts, we propose a generalized notion of distant supervision to automatically connect multiple pieces of text and tables to create pre-training examples that require long-range reasoning. Different types of reasoning are simulated, including intersecting multiple pieces of evidence, bridging from one piece of evidence to another, and detecting unanswerable cases. We conduct a comprehensive evaluation on a variety of extractive question answering datasets ranging from single-hop to multi-hop and from text-only to table-only to hybrid that require various reasoning capabilities and show that ReasonBert achieves remarkable improvement over an array of strong baselines. Few-shot experiments further demonstrate that our pre-training method substantially improves sample efficiency.  more » « less
Award ID(s):
1942980 1815674
PAR ID:
10334267
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complex question answering often requires finding a reasoning chain that consists of multiple evidence pieces. Current approaches incorporate the strengths of structured knowledge and unstructured text, assuming text corpora is semi-structured. Building on dense retrieval methods, we propose a new multi-step retrieval approach (BEAMDR) that iteratively forms an evidence chain through beam search in dense representations. When evaluated on multi-hop question answering, BEAMDR is competitive to state-of-the-art systems, without using any semi-structured information. Through query composition in dense space, BEAMDR captures the implicit relationships between evidence in the reasoning chain. The code is available at https://github.com/ henryzhao5852/BeamDR. 
    more » « less
  2. Question Answering (QA) naturally reduces to an entailment problem, namely, verifying whether some text entails the answer to a question. However, for multi-hop QA tasks, which require reasoning with \textit{multiple} sentences, it remains unclear how best to utilize entailment models pre-trained on large scale datasets such as SNLI, which are based on sentence pairs. We introduce Multee, a general architecture that can effectively use entailment models for multi-hop QA tasks. Multee uses (i) a local module that helps locate important sentences, thereby avoiding distracting information, and (ii) a global module that aggregates information by effectively incorporating importance weights. Importantly, we show that both modules can use entailment functions pre-trained on a large scale NLI datasets. We evaluate performance on MultiRC and OpenBookQA, two multihop QA datasets. When using an entailment function pre-trained on NLI datasets, Multee outperforms QA models trained only on the target QA datasets and the OpenAI transformer models. 
    more » « less
  3. Knowledge graphs (KGs) capture knowledge in the form of head– relation–tail triples and are a crucial component in many AI systems. There are two important reasoning tasks on KGs: (1) single-hop knowledge graph completion, which involves predicting individual links in the KG; and (2), multi-hop reasoning, where the goal is to predict which KG entities satisfy a given logical query. Embedding-based methods solve both tasks by first computing an embedding for each entity and relation, then using them to form predictions. However, existing scalable KG embedding frameworks only support single-hop knowledge graph completion and cannot be applied to the more challenging multi-hop reasoning task. Here we present Scalable Multi-hOp REasoning (SMORE), the first general framework for both single-hop and multi-hop reasoning in KGs. Using a single machine SMORE can perform multi-hop reasoning in Freebase KG (86M entities, 338M edges), which is 1,500× larger than previously considered KGs. The key to SMORE’s runtime performance is a novel bidirectional rejection sampling that achieves a square root reduction of the complexity of online training data generation. Furthermore, SMORE exploits asynchronous scheduling, overlapping CPU-based data sampling, GPU-based embedding computation, and frequent CPU–GPU IO. SMORE increases throughput (i.e., training speed) over prior multi-hop KG frameworks by 2.2× with minimal GPU memory requirements (2GB for training 400-dim embeddings on 86M-node Freebase) and achieves near linear speed-up with the number of GPUs. Moreover, on the simpler single-hop knowledge graph completion task SMORE achieves comparable or even better runtime performance to state-of-the-art frameworks on both single GPU and multi-GPU settings. 
    more » « less
  4. Despite significant progress in video question answering (VideoQA), existing methods fall short of questions that require causal/temporal reasoning across frames. This can be attributed to imprecise motion representations. We introduce Action Temporality Modeling (ATM) for temporality reasoning via three-fold uniqueness: (1) rethinking the optical flow and realizing that optical flow is effective in capturing the long horizon temporality reasoning; (2) training the visual-text embedding by contrastive learning in an action-centric manner, leading to better action representations in both vision and text modalities; and (3) preventing the model from answering the question given the shuffled video in the fine-tuning stage, to avoid spurious correlation between appearance and motion and hence ensure faithful temporality reasoning. In the experiments, we show that ATM outperforms existing approaches in terms of the accuracy on multiple VideoQAs and exhibits better true temporality reasoning ability. 
    more » « less
  5. Open-domain question answering answers a question based on evidence retrieved from a large corpus. State-of-the-art neural approaches require intermediate evidence annotations for training. However, such intermediate annotations are expensive, and methods that rely on them cannot transfer to the more common setting, where only question– answer pairs are available. This paper investigates whether models can learn to find evidence from a large corpus, with only distant supervision from answer labels for model training, thereby generating no additional annotation cost. We introduce a novel approach (DISTDR) that iteratively improves over a weak retriever by alternately finding evidence from the up-to-date model and encouraging the model to learn the most likely evidence. Without using any evidence labels, DISTDR is on par with fully-supervised state-of-theart methods on both multi-hop and singlehop QA benchmarks. Our analysis confirms that DISTDR finds more accurate evidence over iterations, which leads to model improvements. The code is available at https:// github.com/henryzhao5852/DistDR. 
    more » « less