skip to main content


Title: ATM: Action Temporality Modeling for Video Question Answering
Despite significant progress in video question answering (VideoQA), existing methods fall short of questions that require causal/temporal reasoning across frames. This can be attributed to imprecise motion representations. We introduce Action Temporality Modeling (ATM) for temporality reasoning via three-fold uniqueness: (1) rethinking the optical flow and realizing that optical flow is effective in capturing the long horizon temporality reasoning; (2) training the visual-text embedding by contrastive learning in an action-centric manner, leading to better action representations in both vision and text modalities; and (3) preventing the model from answering the question given the shuffled video in the fine-tuning stage, to avoid spurious correlation between appearance and motion and hence ensure faithful temporality reasoning. In the experiments, we show that ATM outperforms existing approaches in terms of the accuracy on multiple VideoQAs and exhibits better true temporality reasoning ability.  more » « less
Award ID(s):
1949694
PAR ID:
10522470
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
ISSN:
1947-4598
ISBN:
979-8-4007-0108-5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Most existing research on visual question answering (VQA) is limited to information explicitly present in an image or a video. In this paper, we take visual understanding to a higher level where systems are challenged to answer questions that involve mentally simulating the hypothetical consequences of performing specific actions in a given scenario. Towards that end, we formulate a vision-language question answering task based on the CLEVR (Johnson et. al., 2017) dataset. We then modify the best existing VQA methods and propose baseline solvers for this task. Finally, we motivate the development of better vision-language models by providing insights about the capability of diverse architectures to perform joint reasoning over image-text modality. Our dataset setup scripts and codes will be made publicly available at https://github.com/shailaja183/clevr_hyp. 
    more » « less
  2. Complex question answering often requires finding a reasoning chain that consists of multiple evidence pieces. Current approaches incorporate the strengths of structured knowledge and unstructured text, assuming text corpora is semi-structured. Building on dense retrieval methods, we propose a new multi-step retrieval approach (BEAMDR) that iteratively forms an evidence chain through beam search in dense representations. When evaluated on multi-hop question answering, BEAMDR is competitive to state-of-the-art systems, without using any semi-structured information. Through query composition in dense space, BEAMDR captures the implicit relationships between evidence in the reasoning chain. The code is available at https://github.com/ henryzhao5852/BeamDR. 
    more » « less
  3. Reasoning is an important ability that we learn from a very early age. Yet, reasoning is extremely hard for algorithms. Despite impressive recent progress that has been reported on tasks that necessitate reasoning, such as visual question answering and visual dialog, models often exploit biases in datasets. To develop models with better reasoning abilities, recently, the new visual commonsense reasoning (VCR) task has been introduced. Not only do models have to answer questions, but also do they have to provide a reason for the given answer. The proposed baseline achieved compelling results, leveraging a meticulously designed model composed of LSTM modules and attention nets. Here we show that a much simpler model obtained by ablating and pruning the existing intricate baseline can perform better with half the number of trainable parameters. By associating visual features with attribute information and better text to image grounding, we obtain further improvements for our simpler & effective baseline, TAB-VCR. We show that this approach results in a 5.3%, 4.4% and 6.5% absolute improvement over the previous state-of-the-art [103] on question answering, answer justification and holistic VCR. 
    more » « less
  4. Social signal processing algorithms have become increasingly better at solving well-defined prediction and estimation problems in audiovisual recordings of group discussion. However, much human behavior and communication is less structured and more subtle. In this paper, we address the problem of generic question answering from diverse audiovisual recordings of human interaction. The goal is to select the correct free-text answer to a free-text question about human interaction in a video. We propose an RNN-based model with two novel ideas: a temporal attention module that highlights key words and phrases in the question and candidate answers, and a consistency measurement module that scores the similarity between the multimodal data, the question, and the candidate answers. This small set of consistency scores forms the input to the final question-answering stage, resulting in a lightweight model. We demonstrate that our model achieves state of the art accuracy on the Social-IQ dataset containing hundreds of videos and question/answer pairs. 
    more » « less
  5. Pretraining a language model (LM) on text has been shown to help various downstream NLP tasks. Recent works show that a knowledge graph (KG) can complement text data, offering structured background knowledge that provides a useful scaffold for reasoning. However, these works are not pretrained to learn a deep fusion of the two modalities at scale, limiting the potential to acquire fully joint representations of text and KG. Here we propose DRAGON (Deep Bidirectional Language-Knowledge Graph Pretraining), a self-supervised approach to pretraining a deeply joint language-knowledge foundation model from text and KG at scale. Specifically, our model takes pairs of text segments and relevant KG subgraphs as input and bidirectionally fuses information from both modalities. We pretrain this model by unifying two self-supervised reasoning tasks, masked language modeling and KG link prediction. DRAGON outperforms existing LM and LM+KG models on diverse downstream tasks including question answering across general and biomedical domains, with +5% absolute gain on average. In particular, DRAGON achieves notable performance on complex reasoning about language and knowledge (+10% on questions involving long contexts or multi-step reasoning) and low-resource QA (+8% on OBQA and RiddleSense), and new state-of-the-art results on various BioNLP tasks. Our code and trained models are available at https://github.com/michiyasunaga/dragon. 
    more » « less