skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bending Stability of Corrugated Tubes With Anisotropic Frustum Shells
Abstract Thin-walled corrugated tubes that have a bending multistability, such as the bendy straw, allow for variable orientations over the tube length. Compared to the long history of corrugated tubes in practical applications, the mechanics of the bending stability and how it is affected by the cross sections and other geometric parameters remain unknown. To explore the geometry-driven bending stabilities, we used several tools, including a reduced-order simulation package, a simplified linkage model, and physical prototypes. We found the bending stability of a circular two-unit corrugated tube is dependent on the longitudinal geometry and the stiffness of the crease lines that connect separate frusta. Thinner shells, steeper cones, and weaker creases are required to achieve bending bi-stability. We then explored how the bending stability changes as the cross section becomes elongated or distorted with concavity. We found the bending bi-stability is favored by deep and convex cross sections, while wider cross sections with a large concavity remain mono-stable. The different geometries influence the amounts of stretching and bending energy associated with bending the tube. The stretching energy has a bi-stable profile and can allow for a stable bent configuration, but it is counteracted by the bending energy which increases monotonically. The findings from this work can enable informed design of corrugated tube systems with desired bending stability behavior.  more » « less
Award ID(s):
1943723
PAR ID:
10334355
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Applied Mechanics
Volume:
89
Issue:
4
ISSN:
0021-8936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Concentric tube robots (CTRs) consist of a set of telescoping, pre-curved tubes, whose overall shape can be actively controlled by translating and rotating the tubes with respect to each other. The majority of CTRs to date consist of piecewise constant-curvature tubes, with a straight section followed by a single constant-curvature section. Several approaches have been proposed for CTR designs that can lead to improvements in metrics such as the workspace, orientability, dexterity, and stability. Here we propose to use CTRs with multiple constant-curvature sections. We perform two simulation studies that compare the performance of the multiple constant- curvature CTRs with standard single constant-curvature tubes. We also demonstrate how using one of the proposed multiple constant-curvature designs can enable the reduction in the number of tubes needed to achieve the same performance as a standard three-tube CTR. 
    more » « less
  2. A severe plastic deformation process, termed accumulative extrusion bonding (AEB), is conceived to steady-state bond metals in the form of multilayered tubes. It is shown that AEB can facilitate bonding of metals in their solid-state, like the process of accumulative roll bonding (ARB). The AEB steps involve iterative extrusion, cutting, expanding, restacking, and annealing. As the process is iterated, the laminated structure layer thicknesses decrease within the tube wall, while the tube wall thickness and outer diameter remain constant. Multilayered bimetallic tubes with approximately 2 mm wall thickness and 25.25 mm outer diameter of copper-aluminum are produced at 52% radial strain per extrusion pass to contain eight layers. Furthermore, tubes of copper-copper are produced at 52% and 68% strain to contain two layers. The amount of bonding at the metal-to-metal interfaces and grain structure are measured using optical microscopy. After detailed examination, only the copper-copper bimetal deformed to 68% strain is found bonded. The yield strength of the copper-copper tube extruded at 68% improves from 83 MPa to 481 MPa; a 480% increase. Surface preparation, as described by the thin film theory, and the amount of deformation imposed per extrusion pass are identified and discussed as key contributors to enact successful metal-to-metal bonding at the interface. Unlike in ARB, bonding in AEB does not occur at ~50% strain revealing the significant role of more complex geometry of tubes relative to sheets in solid-state bonding. 
    more » « less
  3. Tail tube assembly is an essential step in the lifecycle of long-tailed bacteriophages. Limited structural and biophysical information has impeded an understanding of assembly and stability of their long, flexible tail tubes. The hyperthermophilic phage P74-26 is particularly intriguing as it has the longest tail of any known virus (nearly 1 μm) and is the most thermostable known phage. Here, we use structures of the P74-26 tail tube along with an in vitro system for studying tube assembly kinetics to propose the first molecular model for the tail tube assembly of long-tailed phages. Our high-resolution cryo-EM structure provides insight into how the P74-26 phage assembles through flexible loops that fit into neighboring rings through tight "ball-and-socket"-like interactions. Guided by this structure, and in combination with mutational, light scattering, and molecular dynamics simulations data, we propose a model for the assembly of conserved tube-like structures across phage and other entities possessing tail tube-like proteins. We propose that formation of a full ring promotes the adoption of a tube elongation-competent conformation among the flexible loops and their corresponding sockets, which is further stabilized by an adjacent ring. Tail assembly is controlled by the cooperative interaction of dynamic intraring and interring contacts. Given the structural conservation among tail tube proteins and tail-like structures, our model can explain the mechanism of high-fidelity assembly of long, stable tubes. 
    more » « less
  4. The interactions between fluid flow and structural components of collapsible tubes are representative of those in several physiological systems. Although extensively studied, there exists a lack of characterization of the three-dimensionality in the structural deformations of the tube and its influence on the flow field. This experimental study investigates the spatio-temporal relationship between 3D tube geometry and the downstream flow field under conditions of fully open, closed, and slamming-type oscillating regimes. A methodology is implemented to simultaneously measure three-dimensional surface deformations in a collapsible tube and the corresponding downstream flow field. Stereophotogrammetry was used to measure tube deformations, and simultaneous flow field measurements included pressure and planar Particle Image Velocimetry (PIV) data downstream of the collapsible tube. The results indicate that the location of the largest collapse in the tube occurs close to the downstream end. In the oscillating regime, sections of the tube downstream of the largest mean collapse experience the largest oscillations in the entire tube that are completely coherent and in phase. At a certain streamwise distance upstream of the largest collapse, a switch in the direction of oscillations occurs with respect to those downstream. Physically, when the tube experiences constriction downstream of the location of the largest mean collapse, this causes the accumulation of fluid and build-up of pressure in the upstream regions and an expansion of these sections. Fluctuations in the downstream flow field are significantly influenced by tube fluctuations along the minor axes. The fluctuations in the downstream flowfield are influenced by the propagation of disturbances due to oscillations in tube geometry, through the advection of fluid through the tube. Further, the manifestation of the LU-type pressure fluctuations is found to be due to the variation in the propagation speed of the disturbances during the different stages within a period of oscillation of the tube. 
    more » « less
  5. Abstract. The planform geometry of branching drainage networks controls the topography of landscapes and their geomorphic, hydrologic, and ecologic functionality. The complexity of networks' geometry shows significant variability, from simple, straight channels that flow along the regional topographic gradient to intricate, tortuous flow patterns. This variability in complexity presents an enigma, as models show that it emerges independently of any heterogeneity in the environmental conditions. We propose to quantify networks' complexity based on the distribution of lengthwise asymmetry between paired flow pathways that diverge from a divide and rejoin at a junction. Using the lengthwise asymmetry definition, we show that the channel concavity index, describing downstream changes in channel slope, has a primary control on the planform complexity of natural drainage networks. An analytic model and optimal channel network simulations employing an energy minimization principle reveal that landscapes with low concavity channels attain planform stability only with simple network geometry. In contrast, landscapes with high concavity channels can achieve planform stability with various configurations, displaying different degrees of network complexity, including extremely complex geometries. Consequently, landscapes with high concavity index channels can preserve the legacy of former environmental conditions, whereas landscapes with low concavity index channels reorganize in response to environmental changes, erasing the former conditions. Consistent with previous findings showing that channel concavity correlates with climate aridity, we find a significant empirical correlation between aridity and network complexity, suggesting a climatic signature embedded in the large-scale planform geometry of landscapes. 
    more » « less