skip to main content

Title: Relative exposure to microplastics and prey for a pelagic forage fish
Abstract In the global ocean, more than 380 species are known to ingest microplastics (plastic particles less than 5 mm in size), including mid-trophic forage fishes central to pelagic food webs. Trophic pathways that bioaccumulate microplastics in marine food webs remain unclear. We assess the potential for the trophic transfer of microplastics through forage fishes, which are prey for diverse predators including commercial and protected species. Here, we quantify Northern Anchovy ( Engraulis mordax ) exposure to microplastics relative to their natural zooplankton prey, across their vertical habitat. Microplastic and zooplankton samples were collected from the California Current Ecosystem in 2006 and 2007. We estimated the abundance of microplastics beyond the sampled size range but within anchovy feeding size ranges using global microplastic size distributions. Depth-integrated microplastics (0–30 m depth) were estimated using a depth decay model, accounting for the effects of wind-driven vertical mixing on buoyant microplastics. In this coastal upwelling biome, the median relative exposure for an anchovy that consumed prey 0.287–5 mm in size was 1 microplastic particle for every 3399 zooplankton individuals. Microplastic exposure varied, peaking within offshore habitats, during the winter, and during the day. Maximum exposure to microplastic particles relative to zooplankton prey was more » higher for juvenile (1:23) than adult (1:33) anchovy due to growth-associated differences in anchovy feeding. Overall, microplastic particles constituted fewer than 5% of prey-sized items available to anchovy. Microplastic exposure is likely to increase for forage fishes in the global ocean alongside declines in primary productivity, and with increased water column stratification and microplastic pollution. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Environmental Research Letters
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Microplastics are ubiquitous contaminants in marine ecosystems worldwide, threatening fisheries production, food safety, and human health. Ingestion of microplastics by fish and large zooplankton has been documented, but there are few studies focusing on single-celled marine predators, including heterotrophic dinoflagellates. In laboratory experiments, the heterotrophic dinoflagellate species Oxyrrhis marina and Gyrodinium sp. readily ingested both algal prey and polystyrene microplastic spheres (2.5–4.5 μm), while Protoperidinium sp. did not ingest microplastics. Compared to algae-only fed dinoflagellates, those that ingested microplastics had growth rates reduced by 25–35% over the course of 5 days. Reduced growth resulted in a 30–50% reduction of secondary production as measured as predator biomass. Ingestion rates of algal prey were also reduced in the microplastic treatments. When given a mixture of microplastics and algal prey, O. marina displayed a higher selectivity for algal prey than Gyrodinium sp. Observations in the coastal ocean showed that phylogenetically diverse taxa ingested microplastic beads, and thus heterotrophic dinoflagellates could contribute to trophic transfer of microplastics to higher trophic levels. The results of this study may suggest that continued increase in microplastic pollution in the ocean could lead to reduced secondary production of heterotrophic protists due to microplastic ingestion, altering the flow ofmore »energy and matter in marine microbial food webs.« less
  2. Abstract

    Microparticles, such as microplastics and microfibers, are ubiquitous in marine food webs. Filter-feeding megafauna may be at extreme risk of exposure to microplastics, but neither the amount nor pathway of microplastic ingestion are well understood. Here, we combine depth-integrated microplastic data from the California Current Ecosystem with high-resolution foraging measurements from 191 tag deployments on blue, fin, and humpback whales to quantify plastic ingestion rates and routes of exposure. We find that baleen whales predominantly feed at depths of 50–250 m, coinciding with the highest measured microplastic concentrations in the pelagic ecosystem. Nearly all (99%) microplastic ingestion is predicted to occur via trophic transfer. We predict that fish-feeding whales are less exposed to microplastic ingestion than krill-feeding whales. Per day, a krill-obligate blue whale may ingest 10 million pieces of microplastic, while a fish-feeding humpback whale likely ingests 200,000 pieces of microplastic. For species struggling to recover from historical whaling alongside other anthropogenic pressures, our findings suggest that the cumulative impacts of multiple stressors require further attention.

  3. Abstract Microplastics (particles <5 mm) are commonly found in aquatic organisms across taxonomic groups and ecosystems. However, the egestion rate of microplastics from aquatic organisms and how egestion rates compare to other rates of microplastic movement in the environment are sparsely documented. We fed microplastic fibres to round gobies ( Neogobius melanostomus ), an abundant, invasive species in the Laurentian Great Lakes. We conducted two trials where round gobies were fed microplastic‐containing food either a single time (1 day) or every day over 7 days. There was no difference in microplastic egestion rates from the 1 day or 7 day feeding trials, suggesting no impact of duration of exposure on egestion (exponential decay rate = −0.055 [±0.016 SE ] and −0.040 [±0.007 SE ], respectively). Turnover time of microplastics (i.e., average time from ingestion to egestion) in the gut ranged from 18.2 to 25.0 hr, similar to published values for other freshwater taxa. We also measured microplastics in the digestive tracts of round gobies collected directly from Lake Michigan, U.S.A. Using published values for round goby density and microplastic concentration at the study sites, we calculated areal egestion rate by round gobies (no. particles m –2  day –1 ), and compared it to riverine microplastic export (no. particles m –2  daymore »–1 ). Both area‐based rates were of the same order of magnitude, suggesting that round goby egestion could be an important, and potentially overlooked component of microplastic dynamics at the ecosystem scale. Animal egestion is well‐known as a major component of nutrient and carbon cycling. However, direct measurements of microplastic fluxes in the environment that include animal egestion rates are uncommon. An ecosystem ecology approach is needed to meet the emerging challenge of generating microplastic budgets for freshwater environments and elsewhere, thereby informing management and mitigation of plastic pollution at a global scale.« less
  4. This assessment summarises the current state of knowledge on the interactive effects of ozone depletion and climate change on aquatic ecosystems, focusing on how these affect exposures to UV radiation in both inland and oceanic waters. The ways in which stratospheric ozone depletion is directly altering climate in the southern hemisphere and the consequent extensive effects on aquatic ecosystems are also addressed. The primary objective is to synthesise novel findings over the past four years in the context of the existing understanding of ecosystem response to UV radiation and the interactive effects of climate change. If it were not for the Montreal Protocol, stratospheric ozone depletion would have led to high levels of exposure to solar UV radiation with much stronger negative effects on all trophic levels in aquatic ecosystems than currently experienced in both inland and oceanic waters. This “world avoided” scenario that has curtailed ozone depletion, means that climate change and other environmental variables will play the primary role in regulating the exposure of aquatic organisms to solar UV radiation. Reductions in the thickness and duration of snow and ice cover are increasing the levels of exposure of aquatic organisms to UV radiation. Climate change was also expectedmore »to increase exposure by causing shallow mixed layers, but new data show deepening in some regions and shoaling in others. In contrast, climate-change related increases in heavy precipitation and melting of glaciers and permafrost are increasing the concentration and colour of UV-absorbing dissolved organic matter (DOM) and particulates. This is leading to the “browning” of many inland and coastal waters, with consequent loss of the valuable ecosystem service in which solar UV radiation disinfects surface waters of parasites and pathogens. Many organisms can reduce damage due to exposure to UV radiation through behavioural avoidance, photoprotection, and photoenzymatic repair, but meta-analyses continue to confirm negative effects of UV radiation across all trophic levels. Modeling studies estimating photoinhibition of primary production in parts of the Pacific Ocean have demonstrated that the UV radiation component of sunlight leads to a 20% decrease in estimates of primary productivity. Exposure to UV radiation can also lead to positive effects on some organisms by damaging less UV-tolerant predators, competitors, and pathogens. UV radiation also contributes to the formation of microplastic pollutants and interacts with artificial sunscreens and other pollutants with adverse effects on aquatic ecosystems. Exposure to UV-B radiation can decrease the toxicity of some pollutants such as methyl mercury (due to its role in demethylation) but increase the toxicity of other pollutants such as some pesticides and polycyclic aromatic hydrocarbons. Feeding on microplastics by zooplankton can lead to bioaccumulation in fish. Microplastics are found in up to 20% of fish marketed for human consumption, potentially threatening food security. Depletion of stratospheric ozone has altered climate in the southern hemisphere in ways that have increased oceanic productivity and consequently the growth, survival and reproduction of many sea birds and mammals. In contrast, warmer sea surface temperatures related to these climate shifts are also correlated with declines in both kelp beds in Tasmania and corals in Brazil. This assessment demonstrates that knowledge of the interactive effects of ozone depletion, UV radiation, and climate change factors on aquatic ecosystems has advanced considerably over the past four years and confirms the importance of considering synergies between environmental factors.« less
  5. Abstract

    Microplastics are ubiquitous in marine systems; however, knowledge of the effects of these particles on marine fauna is limited. Ocean‐borne plastic debris accumulates in littoral ecosystems worldwide, and invertebrate infauna inhabiting these systems can ingest small plastic particles and fibers, mistaking them for food. We examined the effect of microplastic fibers on physiological and reproductive outcomes in a nearshore organism by exposing Pacific mole crabs (Emerita analoga) to environmentally relevant concentrations of microsized polypropylene rope fibers. We compared adult gravid female crab mortality, reproductive success, and embryonic developmental rates between microfiber‐exposed and control crabs. Pacific mole crabs exposed to polypropylene rope had increased adult crab mortality, and decreased retention of egg clutches, causing variability in embryonic development rates. These effects of microplastic ingestion on a nearshore prey species have implications for predators such as surf perf and shore birds, as plastic use, and resultant microplastic presence in nearshore environments increases. Microplastics are ubiquitous in marine and sandy beach environments, posing a significant threat to the marine organisms that reside therein. The most predominant classification of microplastics found have been microfibers. Although a number of biological effects of microplastics have been measured, with documented effects on growth, little researchmore »has examined how microplastic fibers affect reproductive output and subsequent development of offspring. We examined the effects of exposure to microfibers on adult mortality, reproductive output, and embryonic development of the filter feeding Pacific mole crab (E. analoga), a dominant infaunal organism on sandy beaches. We demonstrate the effects of microplastic ingestion on mole crab mortality and embryonic development, filling a gap in the current knowledge on the impact of microplastics.

    « less