skip to main content


Title: Trophic transfer of microplastics in an estuarine food chain and the effects of a sorbed legacy pollutant
Abstract

Microplastics are of increasing concern as they are readily ingested by aquatic organisms. This study investigated microplastic trophic transfer using larval inland silversides (Menidia beryllina) (5 d posthatch) and unicellular tintinnid (Favellaspp.) as a model food chain relevant to North American estuaries. Low‐density polyethylene microspheres (10–20 μm) were used to compare direct ingestion of microplastics by larval fish and trophic transfer via tintinnid prey. Dichlorodiphenyltrichloroethane (DDT)‐treated microspheres were used to determine sorbed pollutant effects on microplastic ingestion. Larval fish exposed directly to microspheres ingested significantly fewer than those exposed via contaminated prey. Larvae ingested significantly more ciliates containing DDT‐treated microspheres than ciliates containing untreated plastics but did not discriminate when exposed directly. Larvae reared for 16 d following a direct 2 h exposure had significantly lower wet weight values than unexposed controls. Our results demonstrate that trophic transfer is a significant route of microplastic exposure that can cause detrimental effects in sensitive life stages.

 
more » « less
Award ID(s):
1935028
NSF-PAR ID:
10361046
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
5
Issue:
1
ISSN:
2378-2242
Page Range / eLocation ID:
p. 154-162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microplastics are ubiquitous contaminants in marine ecosystems worldwide, threatening fisheries production, food safety, and human health. Ingestion of microplastics by fish and large zooplankton has been documented, but there are few studies focusing on single-celled marine predators, including heterotrophic dinoflagellates. In laboratory experiments, the heterotrophic dinoflagellate species Oxyrrhis marina and Gyrodinium sp. readily ingested both algal prey and polystyrene microplastic spheres (2.5–4.5 μm), while Protoperidinium sp. did not ingest microplastics. Compared to algae-only fed dinoflagellates, those that ingested microplastics had growth rates reduced by 25–35% over the course of 5 days. Reduced growth resulted in a 30–50% reduction of secondary production as measured as predator biomass. Ingestion rates of algal prey were also reduced in the microplastic treatments. When given a mixture of microplastics and algal prey, O. marina displayed a higher selectivity for algal prey than Gyrodinium sp. Observations in the coastal ocean showed that phylogenetically diverse taxa ingested microplastic beads, and thus heterotrophic dinoflagellates could contribute to trophic transfer of microplastics to higher trophic levels. The results of this study may suggest that continued increase in microplastic pollution in the ocean could lead to reduced secondary production of heterotrophic protists due to microplastic ingestion, altering the flow of energy and matter in marine microbial food webs. 
    more » « less
  2. Abstract

    Microplastics are ubiquitous in marine systems; however, knowledge of the effects of these particles on marine fauna is limited. Ocean‐borne plastic debris accumulates in littoral ecosystems worldwide, and invertebrate infauna inhabiting these systems can ingest small plastic particles and fibers, mistaking them for food. We examined the effect of microplastic fibers on physiological and reproductive outcomes in a nearshore organism by exposing Pacific mole crabs (Emerita analoga) to environmentally relevant concentrations of microsized polypropylene rope fibers. We compared adult gravid female crab mortality, reproductive success, and embryonic developmental rates between microfiber‐exposed and control crabs. Pacific mole crabs exposed to polypropylene rope had increased adult crab mortality, and decreased retention of egg clutches, causing variability in embryonic development rates. These effects of microplastic ingestion on a nearshore prey species have implications for predators such as surf perf and shore birds, as plastic use, and resultant microplastic presence in nearshore environments increases. Microplastics are ubiquitous in marine and sandy beach environments, posing a significant threat to the marine organisms that reside therein. The most predominant classification of microplastics found have been microfibers. Although a number of biological effects of microplastics have been measured, with documented effects on growth, little research has examined how microplastic fibers affect reproductive output and subsequent development of offspring. We examined the effects of exposure to microfibers on adult mortality, reproductive output, and embryonic development of the filter feeding Pacific mole crab (E. analoga), a dominant infaunal organism on sandy beaches. We demonstrate the effects of microplastic ingestion on mole crab mortality and embryonic development, filling a gap in the current knowledge on the impact of microplastics.

     
    more » « less
  3. Abstract

    Microparticles, such as microplastics and microfibers, are ubiquitous in marine food webs. Filter-feeding megafauna may be at extreme risk of exposure to microplastics, but neither the amount nor pathway of microplastic ingestion are well understood. Here, we combine depth-integrated microplastic data from the California Current Ecosystem with high-resolution foraging measurements from 191 tag deployments on blue, fin, and humpback whales to quantify plastic ingestion rates and routes of exposure. We find that baleen whales predominantly feed at depths of 50–250 m, coinciding with the highest measured microplastic concentrations in the pelagic ecosystem. Nearly all (99%) microplastic ingestion is predicted to occur via trophic transfer. We predict that fish-feeding whales are less exposed to microplastic ingestion than krill-feeding whales. Per day, a krill-obligate blue whale may ingest 10 million pieces of microplastic, while a fish-feeding humpback whale likely ingests 200,000 pieces of microplastic. For species struggling to recover from historical whaling alongside other anthropogenic pressures, our findings suggest that the cumulative impacts of multiple stressors require further attention.

     
    more » « less
  4. Abstract

    Gelatinous zooplankton play a crucial role in pelagic marine food webs, however, due to methodological challenges and persistent misconceptions of their importance, the trophic role of gelatinous zooplankton remains poorly investigated. This is particularly true for small gelatinous zooplankton including the marine pelagic tunicate,Dolioletta gegenbauri.D. gegenbauriand other doliolid species occur persistently on wide subtropical shelves where they often produce massive blooms in association with shelf upwelling conditions. As efficient filter feeders and prodigious producers of relatively low‐density organic‐rich aggregates, doliolids are understood to contribute significantly to shelf production, pelagic ecology, and pelagic–benthic coupling. Utilizing molecular gut content analysis and stable isotope analysis approaches, the trophic interactions of doliolids were explored during bloom and non‐bloom conditions on the South Atlantic Bight continental shelf in the Western North Atlantic. Based on molecular gut content analysis, relative ingestion selectivity varied withD. gegenbaurilife stage. At all life stages, doliolids ingested a wide range of prey types and sizes, but exhibited selectivity for larger prey types including diatoms, ciliates, and metazoans. Experimental growth studies confirmed that metazoan prey were ingested, but indicated that they were not digested and assimilated. Stable isotopic composition (δ13C and δ15N) of wild‐caught doliolids, during bloom and non‐bloom conditions, were most consistent with a detrital‐supplemented diet. These observations suggest that the feeding ecology ofD. gegenbauriis more complex than previously reported, and have strong and unusual linkages to the microbial food web.

     
    more » « less
  5. The ocean continues to be a sink for microparticle (MP) pollution, which includes microplastics and other anthropogenic debris. While documentation of MP in marine systems is now common, we lack information on rates of MP ingestion by baleen whales and their prey. We collected and assessed MP loads in zooplankton prey and fecal samples of gray whales ( Eschrichtius robustus ) feeding in coastal Oregon, USA and produced the first estimates of baleen whale MP consumption rates from empirical data of zooplankton MP loads (i.e., not modeled). All zooplankton species examined were documented gray whale prey items ( Atylus tridens, Holmesimysis sculpta, Neomysis rayii ) and contained an average of 4 MP per gram of tissue, mostly of the microfiber morphotype. We extrapolated MP loads in zooplankton prey to estimate the daily MP consumption rates of pregnant and lactating gray whales, which ranged between 6.5 and 21 million MP/day. However, these estimates do not account for MP ingested from ambient water or benthic sediments, which may be high for gray whales given their benthic foraging strategy. We also assessed MP loads in fecal samples from gray whales feeding in the same spatio-temporal area and detected MP in all samples examined, which included microfibers and significantly larger morphotypes than in the zooplankton. We theorize that gray whales ingest MP via both indirect trophic transfer from their zooplankton prey and directly through indiscriminate consumption of ambient MPs when foraging benthically where they consume larger MP morphotypes that have sunk and accumulated on the seafloor. Hence, our estimated daily MP consumption rates for gray whales are likely conservative because they are only based on indirect MP ingestion via prey. Our results improve the understanding of MP loads in marine ecosystems and highlight the need to assess the health impacts of MP consumption on zooplankton and baleen whales, particularly due to the predominance of microfibers in samples, which may be more toxic and difficult to excrete than other MP types. Furthermore, the high estimated rates of MP consumption by gray whales highlights the need to assess health consequences to individuals and subsequent scaled-up effects on population vital rates. 
    more » « less