skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Acceptability maximization
The aim of this paper is to study the optimal investment problem by using coherent acceptability indices (CAIs) as a tool to measure the portfolio performance. We call this problem the acceptability maximization. First, we study the one-period (static) case, and propose a numerical algorithm that approximates the original problem by a sequence of risk minimization problems. The results are applied to several important CAIs, such as the gain-to-loss ratio, the risk-adjusted return on capital and the tail-value-at-risk based CAI. In the second part of the paper we investigate the acceptability maximization in a discrete time dynamic setup. Using robust representations of CAIs in terms of a family of dynamic coherent risk measures (DCRMs), we establish an intriguing dichotomy: if the corresponding family of DCRMs is recursive (i.e. strongly time consistent) and assuming some recursive structure of the market model, then the acceptability maximization problem reduces to just a one period problem and the maximal acceptability is constant across all states and times. On the other hand, if the family of DCRMs is not recursive, which is often the case, then the acceptability maximization problem ordinarily is a time-inconsistent stochastic control problem, similar to the classical mean-variance criteria. To overcome this form of time-inconsistency, we adapt to our setup the set-valued Bellman's principle recently proposed in [23] applied to two particular dynamic CAIs - the dynamic risk-adjusted return on capital and the dynamic gain-to-loss ratio. The obtained theoretical results are illustrated via numerical examples that include, in particular, the computation of the intermediate mean-risk efficient frontiers.  more » « less
Award ID(s):
1907568
PAR ID:
10334366
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers of Mathematical Finance
Volume:
1
Issue:
2
ISSN:
2769-6715
Page Range / eLocation ID:
219
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We develop a continuous‐time control approach to optimal trading in a Proof‐of‐Stake (PoS) blockchain, formulated as a consumption‐investment problem that aims to strike the optimal balance between a participant's (or agent's) utility from holding/trading stakes and utility from consumption. We present solutions via dynamic programming and the Hamilton–Jacobi–Bellman (HJB) equations. When the utility functions are linear or convex, we derive close‐form solutions and show that the bang‐bang strategy is optimal (i.e., always buy or sell at full capacity). Furthermore, we bring out the explicit connection between the rate of return in trading/holding stakes and the participant's risk‐adjusted valuation of the stakes. In particular, we show when a participant is risk‐neutral or risk‐seeking, corresponding to the risk‐adjusted valuation being a martingale or a sub‐martingale, the optimal strategy must be to either buy all the time, sell all the time, or first buy then sell, and with both buying and selling executed at full capacity. We also propose a risk‐control version of the consumption‐investment problem; and for a special case, the “stake‐parity” problem, we show a mean‐reverting strategy is optimal. 
    more » « less
  2. To succeed in a competitive business environment, optimal capital investment plays a significant role. A firm cannot ignore the penalty associated with carrying excessive or insufficient production capacity. We provide a model of the optimal rate of capital investment under uncertainty incorporating a penalty to study the key impact. The penalty is modeled as a squared deviation between the expected and the desired levels. The payoff functional thus incorporates a nonlinear function of the expected capital level. This control problem is of the mean field type. We obtain a closed form solution by a direct method. As expected for mean field type control problems, the optimal feedback depends not only on the current states, but also on the initial conditions. We perform numerical studies to quantitatively address how risk control in capital level deviation affects the optimal investment policy. 
    more » « less
  3. Expectile is a generalization of the expected value in probability and statistics. In finance and risk management, the expectile is considered to be an important risk measure due to its connection with gain–loss ratio and its coherent and elicitable properties. Linear multiple expectile regression was proposed in 1987 for estimating the conditional expectiles of a response given a set of covariates. Recently, more flexible nonparametric expectile regression models were proposed based on gradient boosting and kernel learning. In this paper, we propose a new nonparametric expectile regression model by adopting the deep residual network learning framework and name itExpectile NN. Extensive numerical studies on simulated and real datasets demonstrate that Expectile NN has very competitive performance compared with existing methods. We explicitly specify the architecture of Expectile NN so that it is easy to be reproduced and used by others. Expectile NN is the first deep learning model for nonparametric expectile regression. 
    more » « less
  4. Abstract Low total energy expenditure (TEE, MJ/d) has been a hypothesized risk factor for weight gain, but repeatability of TEE, a critical variable in longitudinal studies of energy balance, is understudied. We examine repeated doubly labeled water (DLW) measurements of TEE in 348 adults and 47 children from the IAEA DLW Database (mean ± SD time interval: 1.9 ± 2.9 y) to assess repeatability of TEE, and to examine if TEE adjusted for age, sex, fat-free mass, and fat mass is associated with changes in weight or body composition. Here, we report that repeatability of TEE is high for adults, but not children. Bivariate Bayesian mixed models show no among or within-individual correlation between body composition (fat mass or percentage) and unadjusted TEE in adults. For adults aged 20–60 y (N = 267; time interval: 7.4 ± 12.2 weeks), increases in adjusted TEE are associated with weight gain but not with changes in body composition; results are similar for subjects with intervals >4 weeks (N = 53; 29.1 ± 12.8 weeks). This suggests low TEE is not a risk factor for, and high TEE is not protective against, weight or body fat gain over the time intervals tested. 
    more » « less
  5. Current static verification techniques such as separation logic support a wide range of programs. However, such techniques only support complete and detailed specifications, which places an undue burden on users. To solve this problem, prior work proposed gradual verification, which handles complete, partial, or missing specifications by soundly combining static and dynamic checking. Gradual verification has also been extended to programs that manipulate recursive, mutable data structures on the heap. Unfortunately, this extension does not reward users with decreased dynamic checking as more specifications are written and more static guarantees are made. In fact, all properties are checked dynamically regardless of any static guarantees. Additionally, no full-fledged implementation of gradual verification exists so far, which prevents studying its performance and applicability in practice. We present Gradual C0, the first practicable gradual verifier for recursive heap data structures, which targets C0, a safe subset of C designed for education. Static verifiers supporting separation logic or implicit dynamic frames use symbolic execution for reasoning; so Gradual C0, which extends one such verifier, adopts symbolic execution at its core instead of the weakest liberal precondition approach used in prior work. Our approach addresses technical challenges related to symbolic execution with imprecise specifications, heap ownership, and branching in both program statements and specification formulas. We also deal with challenges related to minimizing insertion of dynamic checks and extensibility to other programming languages beyond C0. Finally, we provide the first empirical performance evaluation of a gradual verifier, and found that on average, Gradual C0 decreases run-time overhead between 7.1 and 40.2% compared to the fully dynamic approach used in prior work (for context, the worst cases for the approach by Wise et al. [2020] range from 0.1 to 4.5 seconds depending on the benchmark). Further, the worst-case scenarios for performance are predictable and avoidable. This work paves the way towards evaluating gradual verification at scale. 
    more » « less