skip to main content


Title: Ex Situ and In Situ Analyses of the Mechanism of Electrocatalytic Hydrogen Peroxide Production by Co x Zn 1–x O (0 x < 0.018) Materials in Alkaline Media
Metal oxide semiconductors have attracted much attention due to their versatility in different applications, ranging from biosensing to green energy-harvesting technologies. Among these metal oxides, oxide-based diluted magnetic semiconductors have also been proposed for fuel cell applications, especially for the oxygen reduction reaction (ORR) and the oxygen evolution reaction. However, the catalytic mechanism has been proposed to follow a two-electron pathway, forming hydrogen peroxide, instead of the four-electron pathway. Herein, we report cobalt-doped zinc oxide (CoxZn1–xO, 0 < x < 0.018) materials prepared using a co-precipitation method suitable for the electrocatalytic production of hydrogen peroxide. The electrocatalytic performance of CoxZn1–xO materials showed up to 60% hydrogen peroxide production with onset potentials near 649 mV, followed by the two-electron ORR mechanism. Ex situ X-ray absorption spectroscopy experiments at the Co K-edge demonstrated the presence of Co(II) ions at tetrahedral sites within the ZnO lattice.  more » « less
Award ID(s):
1827622
NSF-PAR ID:
10334392
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ACS Applied Energy Materials
ISSN:
2574-0962
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metal-free carbon materials have emerged as cost-effective and high-performance catalysts for the production of hydrogen peroxide (H 2 O 2 ) through the two-electron oxygen reduction reaction (ORR). Here, we show that 3D crumpled graphene with controlled oxygen and defect configurations significantly improves the electrocatalytic production of H 2 O 2 . The crumpled graphene electrocatalyst with optimal defect structures and oxygen functional groups exhibits outstanding H 2 O 2 selectivity of 92–100% in a wide potential window of 0.05–0.7 V vs. reversible hydrogen electrode (RHE) and a high mass activity of 158 A g −1 at 0.65 V vs. RHE in alkaline media. In addition, the crumpled graphene catalyst showed an excellent H 2 O 2 production rate of 473.9 mmol gcat −1 h −1 and stability over 46 h at 0.4 V vs. RHE. Moreover, density functional theory calculations revealed the role of the functional groups and defect sites in the two-electron ORR pathway through the scaling relation between OOH and O adsorption strengths. These results establish a structure-mechanism-performance relationship of functionalized carbon catalysts for the effective production of H 2 O 2 . 
    more » « less
  2. The electrocatalytic nitrogen reduction reaction (NRR) is of significant interest as an environmentally friendly method for NH 3 production for agricultural and clean energy applications. Selectivity of NRR vis-à-vis the hydrogen evolution reaction (HER), however, is thought to adversely impact many potential catalysts, including Earth-abundant transition metal oxynitrides. Relative HER/NRR selectivities are therefore directly compared for two transition metal oxynitrides with different metal oxophilicities—Co and V. Electrocatalytic current–potential measurements, operando fluorescence, absorption, and GC measurements of H 2 and NH 3 production, ex situ X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations are combined to directly compare NRR and HER activities under identical reaction conditions. Results show that cobalt oxynitrides – with Co primarily in the Co( ii ) oxidation state – are NRR active at pH 10, with electrochemical reduction of both lattice nitrogen and dissolved N 2 , the latter occurring without N incorporation into the lattice. Removal of lattice N then yields Co( ii ) oxide, which is still NRR active. These results are complemented by calculations showing that N 2 binding at Co( ii ) sites is energetically favored over binding at Co( iii ) sites. GC analysis demonstrates that H 2 production occurs in concert with ammonia production but at a far greater rate. In contrast, vanadium oxynitride films are HER inactive under the same (pH 10) conditions, as well as at pH 7, but are NRR active at pH 7. DFT calculations indicate that a major difference in the two materials is hindered O–H dissociation of H 2 O adsorbed at O-ligated Co vs. V cation centers. The combined studies indicate significant variation in HER vs. NRR selectivity as a function of employed transition metal oxynitrides, as well as different HER mechanisms in V and Co oxynitrides. 
    more » « less
  3. Nanocrystalline MnFe2O4 has shown promise as a catalyst for the oxygen reduction reaction (ORR) in alkaline solutions, but the material has been sparingly studied as highly ordered thin-film catalysts. To examine the role of surface termination and Mn and Fe site occupancy, epitaxial MnFe2O4 and Fe3O4 spinel oxide films were grown on (001)- and (111)-oriented Nb:SrTiO3 perovskite substrates using molecular beam epitaxy and studied as electrocatalysts for the oxygen reduction reaction (ORR). High-resolution X-ray diffraction (HRXRD) and X-ray photoelectron spectroscopy (XPS) show the synthesis of pure phase materials, while scanning transmission electron microscopy (STEM) and reflection high-energy electron diffraction (RHEED) analysis demonstrate island-like growth of (111) surface-terminated pyramids on both (001)- and (111)-oriented substrates, consistent with the literature and attributed to the lattice mismatch between the spinel films and the perovskite substrate. Cyclic voltammograms under a N2 atmosphere revealed distinct redox features for Mn and Fe surface termination based on comparison of MnFe2O4 and Fe3O4. Under an O2 atmosphere, electrocatalytic reduction of oxygen was observed at both Mn and Fe redox features; however, a diffusion-limited current was only achieved at potentials consistent with Fe reduction. This result contrasts with that of nanocrystalline MnFe2O4 reported in the literature where the diffusion-limited current is achieved with Mn-based catalysis. This difference is attributed to a low density of Mn surface termination, as determined by the integration of current from CVs collected under N2, in addition to low conductivity through the MnFe2O4 film due to the degree of inversion. Such low densities are attributed to the synthetic method and island-like growth pattern and highlight challenges in studying ORR catalysis with single-crystal spinel materials. 
    more » « less
  4. Abstract

    Electrocatalysts are required for clean energy technologies (for example, water‐splitting and metal‐air batteries). The development of a multifunctional electrocatalyst composed of nitrogen, phosphorus, and fluorine tri‐doped graphene is reported, which was obtained by thermal activation of a mixture of polyaniline‐coated graphene oxide and ammonium hexafluorophosphate (AHF). It was found that thermal decomposition of AHF provides nitrogen, phosphorus, and fluorine sources for tri‐doping with N, P, and F, and simultaneously facilitates template‐free formation of porous structures as a result of thermal gas evolution. The resultant N, P, and F tri‐doped graphene exhibited excellent electrocatalytic activities for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The trifunctional metal‐free catalyst was further used as an OER–HER bifunctional catalyst for oxygen and hydrogen gas production in an electrochemical water‐splitting unit, which was powered by an integrated Zn–air battery based on an air electrode made from the same electrocatalyst for ORR. The integrated unit, fabricated from the newly developed N, P, and F tri‐doped graphene multifunctional metal‐free catalyst, can operate in ambient air with a high gas production rate of 0.496 and 0.254 μL s−1for hydrogen and oxygen gas, respectively, showing great potential for practical applications.

     
    more » « less
  5. null (Ed.)
    Electrochemical synthesis of hydrogen peroxide (H 2 O 2 ) in acidic solution can enable the electro-Fenton process for decentralized environmental remediation, but robust and inexpensive electrocatalysts for the selective two-electron oxygen reduction reaction (2e − ORR) are lacking. Here, we present a joint computational/experimental study that shows both structural polymorphs of earth-abundant cobalt diselenide (orthorhombic o -CoSe 2 and cubic c -CoSe 2 ) are stable against surface oxidation and catalyst leaching due to the weak O* binding to Se sites, are highly active and selective for the 2e − ORR, and deliver higher kinetic current densities for H 2 O 2 production than the state-of-the-art noble metal or single-atom catalysts in acidic solution. o -CoSe 2 nanowires directly grown on carbon paper electrodes allow for the steady bulk electrosynthesis of H 2 O 2 in 0.05 M H 2 SO 4 with a practically useful accumulated concentration of 547 ppm, the highest among the reported 2e − ORR catalysts in acidic solution. Such efficient and stable H 2 O 2 electrogeneration further enables the effective electro-Fenton process for model organic pollutant degradation. 
    more » « less