skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inhibition of Streptococcus pneumoniae growth by masarimycin
Despite renewed interest, development of chemical biology methods to study peptidoglycan metabolism has lagged in comparison to the glycobiology field in general. To address this, a panel of diamides were screened against the Gram-positive bacterium Streptococcus pneumoniae to identify inhibitors of bacterial growth. The screen identified the diamide masarimycin as a bacteriostatic inhibitor of S. pneumoniae growth with an MIC of 8 µM. The diamide inhibited detergent-induced autolysis in a concentration-dependent manner, indicating perturbation of peptidoglycan degradation as the mode-of-action. Cell based screening of masarimycin against a panel of autolysin mutants, identified a higher MIC against a Δ lytB strain lacking an endo-N-acetylglucosaminidase involved in cell division. Subsequent biochemical and phenotypic analyses suggested that the higher MIC was due to an indirect interaction with LytB. Further analysis of changes to the cell surface in masarimycin treated cells identified the overexpression of several moonlighting proteins, including elongation factor Tu which is implicated in regulating cell shape. Checkerboard assays using masarimycin in concert with additional antibiotics identified an antagonistic relationship with the cell wall targeting antibiotic fosfomycin, which further supports a cell wall mode-of-action.  more » « less
Award ID(s):
2009522 1919644
PAR ID:
10334499
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Microbiology
Volume:
168
Issue:
4
ISSN:
1350-0872
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. From a library of compounds, 11 hit antibacterial agents have been identified as potent anti-Gram-positive bacterial agents. These pyrazole derivatives are active against two groups of pathogens, staphylococci and enterococci, with minimum inhibitory concentration (MIC) values as low as 0.78 μg/mL. These potent compounds showed bactericidal action, and some were effective at inhibiting and eradicating Staphylococcus aureus and Enterococcus faecalis biofilms. Real-time biofilm inhibition by the potent compounds was studied, by using Bioscreen C. These lead compounds were also very potent against S. aureus persisters as compared to controls, gentamycin and vancomycin. In multiple passage studies, bacteria developed little resistance to these compounds (no more than 2 × MIC). The plausible mode of action of the lead compounds is the permeabilization of the cell membrane determined by flow cytometry and protein leakage assays. With the detailed antimicrobial studies, both in planktonic and biofilm contexts, some of these potent compounds have the potential for further antimicrobial drug development. 
    more » « less
  2. Rod-shaped mycobacteria expand from their poles, yet d-amino acid probes label cell wall peptidoglycan in this genus at both the poles and sidewall. We sought to clarify the metabolic fates of these probes. Monopeptide incorporation was decreased by antibiotics that block peptidoglycan synthesis or l,d-transpeptidation and in an l,d-transpeptidase mutant. Dipeptides complemented defects in d-alanine synthesis or ligation and were present in lipid-linked peptidoglycan precursors. Characterizing probe uptake pathways allowed us to localize peptidoglycan metabolism with precision: monopeptide-marked l,d-transpeptidase remodeling and dipeptide-marked synthesis were coincident with mycomembrane metabolism at the poles, septum and sidewall. Fluorescent pencillin-marked d,d-transpeptidation around the cell perimeter further suggested that the mycobacterial sidewall is a site of cell wall assembly. While polar peptidoglycan synthesis was associated with cell elongation, sidewall synthesis responded to cell wall damage. Peptidoglycan editing along the sidewall may support cell wall robustness in pole-growing mycobacteria. 
    more » « less
  3. Summary The diversity of cell shapes across the bacterial kingdom reflects evolutionary pressures that have produced physiologically important morphologies. While efforts have been made to understand the regulation of some prototypical cell morphologies such as that of rod‐shapedEscherichia coli, little is known about most cell shapes. ForCaulobacter crescentus, polar stalk synthesis is tied to its dimorphic life cycle, and stalk elongation is regulated by phosphate availability. Based on the previous observation thatC. crescentusstalks are lysozyme‐resistant, we compared the composition of the peptidoglycan cell wall of stalks and cell bodies and identified key differences in peptidoglycan crosslinking. Cell body peptidoglycan contained primarily DD‐crosslinks betweenmeso‐diaminopimelic acid and D‐alanine residues, whereas stalk peptidoglycan had more LD‐transpeptidation (meso‐diaminopimelic acid‐meso‐diaminopimelic acid), mediated by LdtD. We determined thatldtDis dispensable for stalk elongation; rather, stalk LD‐transpeptidation reflects an aging process associated with low peptidoglycan turnover in the stalk. We also found that lysozyme resistance is a structural consequence of LD‐crosslinking. Despite no obvious selection pressure for LD‐crosslinking or lysozyme resistance inC. crescentus, the correlation between these two properties was maintained in other organisms, suggesting that DAP‐DAP crosslinking may be a general mechanism for regulating bacterial sensitivity to lysozyme. 
    more » « less
  4. Bacterial cell division and peptidoglycan (PG) synthesis are orchestrated by the coordinated dynamic movement of essential protein complexes. Recent studies show that bidirectional treadmilling of FtsZ filaments/bundles is tightly coupled to and limiting for both septal PG synthesis and septum closure in some bacteria, but not in others. Here we report the dynamics of FtsZ movement leading to septal and equatorial ring formation in the ovoid-shaped pathogen,Streptococcus pneumoniae. Conventional and single-molecule total internal reflection fluorescence microscopy (TIRFm) showed that nascent rings of FtsZ and its anchoring and stabilizing proteins FtsA and EzrA move out from mature septal rings coincident with MapZ rings early in cell division. This mode of continuous nascent ring movement contrasts with a failsafe streaming mechanism of FtsZ/FtsA/EzrA observed in a ΔmapZmutant and anotherStreptococcusspecies. This analysis also provides several parameters of FtsZ treadmilling in nascent and mature rings, including treadmilling velocity in wild-type cells andftsZ(GTPase) mutants, lifetimes of FtsZ subunits in filaments and of entire FtsZ filaments/bundles, and the processivity length of treadmilling of FtsZ filament/bundles. In addition, we delineated the motion of the septal PBP2x transpeptidase and its FtsW glycosyl transferase-binding partner relative to FtsZ treadmilling inS. pneumoniaecells. Five lines of evidence support the conclusion that movement of the bPBP2x:FtsW complex in septa depends on PG synthesis and not on FtsZ treadmilling. Together, these results support a model in which FtsZ dynamics and associations organize and distribute septal PG synthesis, but do not control its rate inS. pneumoniae. 
    more » « less
  5. null (Ed.)
    The interaction between host immunity and bacterial cells plays a pivotal role in a variety of human diseases. The bacterial cell wall component peptidoglycan (PG) is known to stimulate an immune response, which makes PG a distinctive recognition element for unveiling these complicated molecular interactions. Pattern recognition receptor (PRR) proteins are among the critical components of this system that initially recognize molecular patterns associated with microorganisms such as bacteria and fungi. These molecular patterns are mostly embedded in the bacterial or fungal cell wall structure and can be released and presented to the immune system in various situations. Nonetheless, detailed knowledge of this recognition is limited due to the diversity among the PG polymer and its fragments; the subsequent responses by multiple hosts add more complexity. Here, we discuss how our understanding of the role and molecular mechanisms of the well-studied PRR, the NOD-like receptors (NLRs), in the human immune system has evolved in recent years. We highlight the instances of other classes of proteins with similar behavior in the recognition of PG that have been identified in other microorganisms such as yeasts. These proteins are particularly interesting because a network of cellular interactions exists between human host cells, bacteria and yeast as a part of the normal human flora. To support our understanding of these interactions, we provide insight into the chemist's toolbox of peptidoglycan probes that aid in the investigations of the behaviors of these proteins and other biological contexts relevant to the sensing and recognition of peptidoglycan. The importance of these interactions in human health for the development of biomarkers and biotherapy is highlighted. 
    more » « less