skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detection of Sulfur Dioxide by Broadband Cavity-Enhanced Absorption Spectroscopy (BBCEAS)
Sulfur dioxide (SO2) is an important precursor for the formation of atmospheric sulfate aerosol and acid rain. We present an instrument using Broadband Cavity-Enhanced Absorption Spectroscopy (BBCEAS) for the measurement of SO2 with a minimum limit of detection of 0.75 ppbv (3-σ) using the spectral range 305.5–312 nm and an averaging time of 5 min. The instrument consists of high-reflectivity mirrors (0.9985 at 310 nm) and a deep UV light source (Light Emitting Diode). The effective absorption path length of the instrument is 610 m with a 0.966 m base length. Published reference absorption cross sections were used to fit and retrieve the SO2 concentrations and were compared to fluorescence standard measurements for SO2. The comparison was well correlated, R2 = 0.9998 with a correlation slope of 1.04. Interferences for fluorescence measurements were tested and the BBCEAS showed no interference, while ambient measurements responded similarly to standard measurement techniques.  more » « less
Award ID(s):
2114655
PAR ID:
10334500
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
7
ISSN:
1424-8220
Page Range / eLocation ID:
2626
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Alaskan Layered Pollution And Chemical Analysis (ALPACA)-2022 field study (https://alpaca.community.uaf.edu/alpaca-field-study/) investigated air pollution under dark and cold conditions in Fairbanks, Alaska in January and February, 2022. One of the main motivations for ALPACA was to understand how temperature inversions trap pollutants at the surface. This was studied by using University of California, Los Angeles (UCLA) long-path Differential Optical Absorption Spectroscopy instrument (LP-DOAS) to probe the Fairbanks atmosphere from 12 meters(m) – 191m altitude and yield information on the vertical distribution of various trace gases / pollutants. The dataset contains the open atmosphere LP-DOAS measurement of Ozone (O3), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), Formaldehyde (HCHO), and Nitrous Acid (HONO) on four different light paths over wintertime downtown Fairbanks, Alaska (AK) during ALPACA. The four light paths cover the following altitude intervals: 12-17m, 17-73m, 17-115m, and 17-191m. The ReadMe file included in the data set provides exact coordinates, length, and altitude intervals for the four light paths. 
    more » « less
  2. Abstract. A new instrument for the measurement of atmosphericnitrous acid (HONO) and hydroxyl radicals (OH) has been developed usinglaser photofragmentation (LP) of HONO at 355 nm after expansion into alow-pressure cell, followed by resonant laser-induced fluorescence (LIF) ofthe resulting OH radical fragment at 308 nm similar to the fluorescenceassay by gas expansion technique (FAGE). The LP/LIF instrument is calibratedby determining the photofragmentation efficiency of HONO andcalibrating the instrument sensitivity for detection of the OH fragment. Inthis method, a known concentration of OH from the photo-dissociation ofwater vapor is titrated with nitric oxide to produce a known concentrationof HONO. Measurement of the concentration of the OH radical fragmentrelative to the concentration of HONO provides a measurement of thephotofragmentation efficiency. The LP/LIF instrument has demonstrated a1σ detection limit for HONO of 9 ppt for a 10 min integration time.Ambient measurements of HONO and OH from a forested environment and an urbansetting are presented along with indoor measurements to demonstrate theperformance of the instrument. 
    more » « less
  3. Recently, the occurrence of fog and haze over China has increased. The retrieval of trace gases from the multi-axis differential optical absorption spectroscopy (MAX-DOAS) is challenging under these conditions. In this study, various reported retrieval settings for formaldehyde (HCHO) and sulfur dioxide (SO2) are compared to evaluate the performance of these settings under different meteorological conditions (clear day, haze, and fog). The dataset from 1st December 2019 to 31st March 2020 over Nanjing, China, is used in this study. The results indicated that for HCHO, the optimal settings were in the 324.5–359 nm wavelength window with a polynomial order of five. At these settings, the fitting and root mean squared (RMS) errors for column density were considerably improved for haze and fog conditions, and the differential slant column densities (DSCDs) showed more accurate values compared to the DSCDs between 336.5 and 359 nm. For SO2, the optimal settings for retrieval were found to be at 307–328 nm with a polynomial order of five. Here, root mean square (RMS) and fitting errors were significantly lower under all conditions. The observed HCHO and SO2 vertical column densities were significantly lower on fog days compared to clear days, reflecting a decreased chemical production of HCHO and aqueous phase oxidation of SO2 in fog droplets. 
    more » « less
  4. Real-time and non-invasive measurements of tissue concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) are invaluable for research and clinical use. Frequency-domain near-infrared spectroscopy (FD-NIRS) enables non-invasive measurement of these chromophore concentrations in human tissue. We present a small form factor, dual-wavelength, miniaturized FD-NIRS instrument for absolute optical measurements, built around a custom application-specific integrated circuit and a dual-slope/self-calibrating (DS/SC) probe. The modulation frequency is 55 MHz, and the heterodyning technique was used for intensity and phase readout, with an acquisition rate of 0.7 Hz. The instrument consists of a 14 × 17 cm2 printed circuit board (PCB), a Raspberry Pi 4, an STM32G491 microcontroller, and the DS/SC probe. The DS/SC approach enables this instrument to be selective to deeper tissue and conduct absolute measurements without calibration. The instrument was initially validated using a tissue-mimicking solid phantom, and upon confirming its suitability for in vivo, a vascular occlusion experiment on a human subject was conducted. For the phantom experiments, an average of 0.08° phase noise and 0.10% standard deviation over the mean for the intensities was measured at a source–detector distance of 35 mm. The absorption and reduced scattering coefficients had average precisions (variation of measurement over time) of 0.5% and 0.9%, respectively, on a window of ten frames. Results from the in vivo experiment yielded the expected increase in HbO2 and HbR concentration for all measurement types tested, namely SC, DS intensity, and DS phase. 
    more » « less
  5. We describe a new version of the Chicago Water Isotope Spectrometer (ChiWIS), designed for airborne measurements of vapor-phase water isotopologues in the dry upper troposphere and lower stratosphere (UTLS) aboard research aircraft. This version of the instrument is a tunable diode laser (TDL), off-axis integrated cavity output spectrometer (OA-ICOS). The instrument was designed to measure the HDO/H2O ratio in the 2017 Asian Summer Monsoon flight aboard the M-55 Geophysica during the StratoClim campaign, and so far has also flown aboard the WB-57F in the 2021 and 2022 ACCLIP campaigns. The spectrometer scans absorption lines of both H2O and HDO near 2.647 μm wavelength in a single current sweep, and has an effective path length of 7.5 km under optimal conditions. The instrument utilizes a novel non-axially-symmetric optical component which increases the signal-to-noise ratio by a factor of 3. Ultra-polished, 4-inch diameter cavity mirrors suppress scattering losses, maximize mirror reflectivity, and yield optical fringing significantly below typical electrical noise levels. In laboratory conditions, the instrument has demonstrated a 5-second measurement precision of 3.6 ppbv and 82 pptv in H2O and HDO, respectively. 
    more » « less