skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Movement and Motion of Soybean Cyst Nematode Heterodera glycines Populations and Individuals in Response to Abamectin
Two new in vitro methods were developed to analyze plant-parasitic nematode behavior, at the population and the individual organism levels, through time-lapse image analysis. The first method employed a high-resolution flatbed scanner to monitor the movement of a population of nematodes over a 24-h period at 25°C. The second method tracked multiple motion parameters of individual nematodes on a microscopic scale, using a high-speed camera. Changes in movement and motion of second-stage juveniles (J2) of the soybean cyst nematode Heterodera glycines Ichinohe were measured after exposure to a serial dilution of abamectin (0.1 to 100 μg/ml). Movement and motion of H. glycines were significantly reduced as the concentration of abamectin increased. The effective range of abamectin to inhibit movement and motion of H. glycines J2 was between 1.0 and 10 μg/ml. Proof-of-concept experiments for both methods produced one of the first in vitro sensitivity studies of H. glycines to abamectin. The two methods developed allow for higher-throughput analysis of nematode movement and motion and provide objective and data-rich measurements that are difficult to achieve from conventional microscopic laboratory methods.  more » « less
Award ID(s):
1556370
PAR ID:
10334517
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Phytopathology®
Volume:
108
Issue:
7
ISSN:
0031-949X
Page Range / eLocation ID:
885 to 891
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this study was to determine the effects of ILeVO (fluopyram) and VOTiVO (Bacillus firmus I-1582) seed treatments on Heterodera glycines second-stage juvenile (J2) root penetration and behavior. In a growth chamber experiment, roots of soybeans grown from treated or untreated seeds were inoculated with H. glycines J2s at soil depths of 2.5, 5, or 7.5 cm. ILeVO significantly reduced H. glycines root penetration compared with the untreated control, but only when J2s were inoculated at a soil depth of 2.5 cm, which was near the seed. Changes in nematode behavior were assessed by collecting 60-s videos of J2s after 2 h of exposure to exudates from treated seeds or radicles from treated seeds or from soil leachates in which treated seeds were planted. X- and y-coordinates of each of the 13 reference points were recorded every hour for 24 h. A custom program analyzed and transformed the coordinates into nematode motion parameters (speed and total change in curvature). ILeVO, but not VOTiVO, seed exudates significantly reduced J2 speed relative to the untreated control. Soil leachates from ILeVO or VOTiVO treatments had no consistent effect on H. glycines speed or total change in curvature compared with the untreated control. In another experiment, treated or untreated seeds were incubated in wells of 6-well tissue culture plates containing 11.5% Pluronic gel. Seeds were removed after 2 h, and approximately 50 J2s then were pipetted into each well. The plates were scanned every 60 min for 24 h, and the number of J2s in each well that moved a minimum distance of ≥300 µm was determined using another custom software program. ILeVO, but not VOTiVO, significantly reduced the movement of J2 populations relative to control wells in which no seeds were added. And wells that had seeds, treated or not, yielded significantly less J2 movement compared with the no-seed control. The results of these experiments indicate that ILeVO reduces activity on H. glycines J2s but may not affect nematodes beyond a limited area surrounding the treated seed. 
    more » « less
  2. Nematicidal seed treatments are a relatively new strategy for managing plant-parasitic nematodes in row crops. Two such seed treatments, Avicta (abamectin) and Clariva (Pasteuria nishizawae), are marketed by Syngenta for use against Heterodera glycines in soybean production in the upper Midwest. The specific effects of these seed treatments on the biology of the nematode have not been previously reported. The effects of Avicta and Clariva on H. glycines hatching, movement, attraction, penetration, development, and reproduction were determined in controlled-environment experiments. Avicta inhibited juvenile movement and penetration at the seed depth and 3 cm below the seed. Clariva inhibited juvenile movement and penetration 3 and 5 cm below the seed and nematode development within the roots of young plants. Both seed treatments affected nematodes in 10- and 20-day-old plants, but effects were not detected on nematodes developing in older plants (30 and 60 days) with larger root systems. These results provide details of the specific mechanisms of early-season protection provided by Avicta and Clariva seed treatments. 
    more » « less
  3. Plant-parasitic nematodes cause substantial damage to agricultural crops worldwide. Long-term management of these pests requires novel strategies to reduce infection of host plants. Disruption of nematode chemotaxis to root systems has been proposed as a potential management approach, and novel assays are needed to test the chemotactic behavior of nematodes against a wide range of synthetic chemicals and root exudates. Two microfluidic chips were developed that measure the attraction or repulsion of nematodes to chemicals (“chemical chip”) and young plant roots (“root chip”). The chip designs allowed for chemical concentration gradients to be maintained up to 24 h, the nematodes to remain physically separate from the chemical reservoirs, and for images of nematode populations to be captured using either a microscope or a flatbed scanner. In the experiments using the chemical chips, seven ionic solutions were tested on second-stage juveniles (J2s) of Meloidogyne incognita and Heterodera glycines. Results were consistent with previous reports of repellency of M. incognita to a majority of the ionic solutions, including NH 4 NO 3 , KNO 3 , KCl, MgCl 2 , and CaCl 2 . H. glycines was found to be attracted to both NH 4 NO 3 and KNO 3 , which has not been reported previously. A software program was written to aid in monitoring the location of nematodes at regular time intervals using the root chip. In experiments with the root chip, H. glycines J2s were attracted to roots of 3-day-old, susceptible (cultivar Williams 82) soybean seedlings, and attraction of H. glycines to susceptible soybean was similar across the length of the root. Attraction to resistant (cultivar Jack) soybean seedlings relative to the water only control was inconsistent across runs, and H. glycines J2s were not preferentially attracted to the roots of resistant or susceptible cultivars when both were placed on opposite sides of the same root chip. The chips developed allow for direct tests of plant-parasitic nematode chemotaxis to chemicals and roots with minimal human intervention. 
    more » « less
  4. Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1–6) and three hopane triterpenes (7–9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54–26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2−), with IC50 values of compounds 2, 4, and 6 ~3.45–14.04 μg/mL and 22.87–53.31 μg/mL towards DPPH and O2−, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens. 
    more » « less
  5. Steinernema entomopathogenic nematodes form specific, obligate symbiotic associations with gram-negative, gammaproteobacteria members of the Xenorhabdus genus. Together, the nematodes and symbiotic bacteria infect and kill insects, utilize the nutrient-rich cadaver for reproduction, and then reassociate, the bacteria colonizing the nematodes’ anterior intestines before the nematodes leave the cadaver to search for new prey. In addition to their use in biocontrol of insect pests, these nematode-bacteria pairs are highly tractable experimental laboratory models for animal-microbe symbiosis and parasitism research. One advantageous feature of entomopathogenic nematode model systems is that the nematodes are optically transparent, which facilitates direct observation of nematode-associated bacteria throughout the lifecycle. In this work, green- and red-fluorescently labeled X. griffiniae HGB2511 bacteria were created and associated with their S. hermaphroditum symbiotic nematode partners and observed using fluorescence microscopy. As expected, the fluorescent bacteria were visible as a colonizing cluster in the lumen of the anterior intestinal caecum of the infective stage of the nematode. These tools allow detailed observations of X. griffiniae localization and interactions with its nematode and insect host tissues throughout their lifecycles. 
    more » « less