2-Pyridone ligand-facilitated palladium-catalyzed direct C–H bond functionalization via the transient directing group strategy has become an attractive topic. Here, we report a Pd-catalyzed direct β-C(sp3)–H arylation reaction of tertiary aliphatic aldehydes by using an α-amino acid as a transient directing group in combination with a 2-pyridone ligand. 
                        more » 
                        « less   
                    
                            
                            Ligand-promoted palladium-catalyzed β-methylene C–H arylation of primary aldehydes
                        
                    
    
            The transient directing group (TDG) strategy allowed long awaited access to the direct β-C(sp 3 )–H functionalization of unmasked aliphatic aldehydes via palladium catalysis. However, the current techniques are restricted to terminal methyl functionalization, limiting their structural scopes and applicability. Herein, we report the development of a direct Pd-catalyzed methylene β-C–H arylation of linear unmasked aldehydes by using 3-amino-3-methylbutanoic acid as a TDG and 2-pyridone as an external ligand. Density functional theory calculations provided insights into the reaction mechanism and shed light on the roles of the external and transient directing ligands in the catalytic transformation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2029932
- PAR ID:
- 10334519
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 13
- Issue:
- 20
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 5938 to 5943
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The first example of PdII‐catalyzed γ‐C(sp3)−H functionalization of aliphatic and benzoheteroaryl aldehydes has been developed using a transient ligand and an external ligand, concurrently. A wide array of γ‐arylated aldehydes were readily accessed without preinstalling internal directing groups. The catalytic mechanism was studied by performing deuterium‐labelling experiments, which indicated that the γ‐C(sp3)−H bond cleavage is the rate‐limiting step during the reaction process. This reaction could be performed on a gram scale, and also demonstrated its potential application in the synthesis of new mechanofluorochromic materials with blue‐shifted mechanochromic properties.more » « less
- 
            null (Ed.)In the past decade, selective C–C and C-heteroatom bond construction through palladium-catalyzed direct C–H bond functionalization has been extensively studied by employing a variety of directing groups. Within this category, direct asymmetric C(sp 2 )–H and C(sp 3 )–H activation for the construction of highly enantiomerically enriched skeletons still progressed at a slow pace. This minireview briefly introduces the major advances in the field for palladium-catalyzed direct asymmetric C–H bond functionalization via the directing group strategy.more » « less
- 
            Abstract Palladium(II)‐catalyzed C(alkenyl)−H alkenylation enabled by a transient directing group (TDG) strategy is described. The dual catalytic process takes advantage of reversible condensation between an alkenyl aldehyde substrate and an amino acid TDG to facilitate coordination of the metal catalyst and subsequent C(alkenyl)−H activation by a tailored carboxylate base. The resulting palladacycle then engages an acceptor alkene, furnishing a 1,3‐diene with high regio‐ andE/Z‐selectivity. The reaction enables the synthesis of enantioenriched atropoisomeric 2‐aryl‐substituted 1,3‐dienes, which have seldom been examined in previous literature. Catalytically relevant alkenyl palladacycles were synthesized and characterized by X‐ray crystallography, and the energy profiles of the C(alkenyl)−H activation step and the stereoinduction model were elucidated by density functional theory (DFT) calculations.more » « less
- 
            Abstract Carbazole alkaloids hold great potential in pharmaceutical and material sciences. However, the current approaches for C1 functionalization of carbazoles rely on the use of a pre‐installed directing group, severely limiting their applicability and hindering their overall efficiency. Herein, we report for the first time the development of direct Pd‐catalyzed C−H alkylation and acylation of carbazoles assisted by norbornene (NBE) as a transient directing mediator. Notably, the involvement of a six‐membered palladacycle intermediate was suggested in this case, representing the first example of such intermediacy within the extensively studied Pd/norbornene reactions realm.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    