skip to main content


Title: Open Droplet Microfluidics for Testing Multi-Drug Resistance and Antibiotic Resilience in Bacteria
New combinations of existing antibiotics are being investigated to combat bacterial resilience. This requires detection technologies with reasonable cost, accuracy, resolution, and throughput. Here, we present a multi -drug screening platform for bacterial cultures by combining droplet microfluidics, search algorithms, and imaging with a wide field of view. We remotely alter the chemical microenvironment around cells and test 12 combinations of resistant cell types and chemicals. Fluorescence intensity readouts allow us to infer bacterial resistance to specific antibiotics within 8 hours. The platform has potential to detect and identify parameters of bacterial resilience in cell cultures, biofilms, and microbial aggregates.  more » « less
Award ID(s):
1556370
NSF-PAR ID:
10334523
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Transducers
Volume:
2021
Page Range / eLocation ID:
988 to 991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background The biofilm of a methanol-fed, marine denitrification system is composed of a multi-species microbial community, among which Hyphomicrobium nitrativorans and Methylophaga nitratireducenticrescens are the principal bacteria involved in the denitrifying activities. To assess its resilience to environmental changes, the biofilm was cultivated in artificial seawater (ASW) under anoxic conditions and exposed to a range of specific environmental conditions. We previously reported the impact of these changes on the denitrifying activities and the co-occurrence of H. nitrativorans strain NL23 and M. nitratireducenticrescens in the biofilm cultures. Here, we report the impact of these changes on the dynamics of the overall microbial community of the denitrifying biofilm. Methods The original biofilm (OB) taken from the denitrification system was cultivated in ASW under anoxic conditions with a range of NaCl concentrations, and with four combinations of nitrate/methanol concentrations and temperatures. The OB was also cultivated in the commercial Instant Ocean seawater (IO). The bacterial diversity of the biofilm cultures and the OB was determined by 16S ribosomal RNA gene sequences. Culture approach was used to isolate other denitrifying bacteria from the biofilm cultures. The metatranscriptomes of selected biofilm cultures were derived, along with the transcriptomes of planktonic pure cultures of H. nitrativorans strain NL23 and M. nitratireducenticrescens strain GP59. Results High proportions of M. nitratireducenticrescens occurred in the biofilm cultures. H. nitrativorans strain NL23 was found in high proportion in the OB, but was absent in the biofilm cultures cultivated in the ASW medium at 2.75% NaCl. It was found however in low proportions in the biofilm cultures cultivated in the ASW medium at 0–1% NaCl and in the IO biofilm cultures. Denitrifying bacterial isolates affiliated to Marinobacter spp. and Paracoccus spp. were isolated. Up regulation of the denitrification genes of strains GP59 and NL23 occurred in the biofilm cultures compared to the planktonic pure cultures. Denitrifying bacteria affiliated to the Stappia spp. were metabolically active in the biofilm cultures. Conclusions These results illustrate the dynamics of the microbial community in the denitrifying biofilm cultures in adapting to different environmental conditions. The NaCl concentration is an important factor affecting the microbial community in the biofilm cultures. Up regulation of the denitrification genes of M. nitratireducenticrescens strain GP59 and H. nitrativorans strain NL23 in the biofilm cultures suggests different mechanisms of regulation of the denitrification pathway in the biofilm. Other denitrifying heterotrophic bacteria are present in low proportions, suggesting that the biofilm has the potential to adapt to heterotrophic, non-methylotrophic environments. 
    more » « less
  2. Abstract

    Cell-cell interactions play an important role in bacterial antibiotic resistance. Here, we asked whether neighbor proximity is sufficient to generate single-cell variation in antibiotic resistance due to local differences in antibiotic concentrations. To test this, we focused on multidrug efflux pumps because recent studies have revealed that expression of pumps is heterogeneous across populations. Efflux pumps can export antibiotics, leading to elevated resistance relative to cells with low or no pump expression. In this study, we co-cultured cells with and without AcrAB-TolC pump expression and used single-cell time-lapse microscopy to quantify growth rate as a function of a cell’s neighbors. In inhibitory concentrations of chloramphenicol, we found that cells lacking functional efflux pumps (ΔacrB) grow more slowly when they are surrounded by cells with AcrAB-TolC pumps than when surrounded by ΔacrBcells. To help explain our experimental results, we developed an agent-based mathematical model, which demonstrates the impact of neighbors based on efflux efficiency. Our findings hold true for co-cultures ofEscherichia coliwith and without pump expression and also in co-cultures ofE.coliandSalmonella typhumirium. These results show how drug export and local microenvironments play a key role in defining single-cell level antibiotic resistance.

     
    more » « less
  3. Bonomo, Robert A. (Ed.)
    ABSTRACT Microbial diversity is reduced in the gut microbiota of animals and humans treated with selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs). The mechanisms driving the changes in microbial composition, while largely unknown, is critical to understand considering that the gut microbiota plays important roles in drug metabolism and brain function. Using Escherichia coli , we show that the SSRI fluoxetine and the TCA amitriptyline exert strong selection pressure for enhanced efflux activity of the AcrAB-TolC pump, a member of the resistance-nodulation-cell division (RND) superfamily of transporters. Sequencing spontaneous fluoxetine- and amitriptyline-resistant mutants revealed mutations in marR and lon, negative regulators of AcrAB-TolC expression. In line with the broad specificity of AcrAB-TolC pumps these mutants conferred resistance to several classes of antibiotics. We show that the converse also occurs, as spontaneous chloramphenicol-resistant mutants displayed cross-resistance to SSRIs and TCAs. Chemical-genomic screens identified deletions in marR and lon, confirming the results observed for the spontaneous resistant mutants. In addition, deletions in 35 genes with no known role in drug resistance were identified that conferred cross-resistance to antibiotics and several displayed enhanced efflux activities. These results indicate that combinations of specific antidepressants and antibiotics may have important effects when both are used simultaneously or successively as they can impose selection for common mechanisms of resistance. Our work suggests that selection for enhanced efflux activities is an important factor to consider in understanding the microbial diversity changes associated with antidepressant treatments. IMPORTANCE Antidepressants are prescribed broadly for psychiatric conditions to alter neuronal levels of synaptic neurotransmitters such as serotonin and norepinephrine. Two categories of antidepressants are selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs); both are among the most prescribed drugs in the United States. While it is well-established that antidepressants inhibit reuptake of neurotransmitters there is evidence that they also impact microbial diversity in the gastrointestinal tract. However, the mechanisms and therefore biological and clinical effects remain obscure. We demonstrate antidepressants may influence microbial diversity through strong selection for mutant bacteria with increased AcrAB-TolC activity, an efflux pump that removes antibiotics from cells. Furthermore, we identify a new group of genes that contribute to cross-resistance between antidepressants and antibiotics, several act by regulating efflux activity, underscoring overlapping mechanisms. Overall, this work provides new insights into bacterial responses to antidepressants important for understanding antidepressant treatment effects. 
    more » « less
  4. The rise in bacterial resistance to common antibiotics has raised an increased need for alternative treatment strategies. The natural antibacterial product, 18β-glycyrrhetinic acid (GRA) has shown efficacy against community-associated methicillin-resistant Staphylococcus aureus (MRSA), although its interactions against planktonic and biofilm modes of growth remain poorly understood. This investigation utilized biochemical and metabolic approaches to further elucidate the effects of GRA on MRSA. Prolonged exposure of planktonic MRSA cell cultures to GRA resulted in increased production of staphyloxanthin, a pigment known to exhibit antioxidant and membrane-stabilizing functions. Then, 1D 1H NMR analyses of intracellular metabolite extracts from MRSA treated with GRA revealed significant changes in intracellular polar metabolite profiles, including increased levels of succinate and citrate, and significant reductions in several amino acids, including branch chain amino acids. These changes reflect the MRSA response to GRA exposure, including potentially altering its membrane composition, which consumes branched chain amino acids and leads to significant energy expenditure. Although GRA itself had no significant effect of biofilm viability, it seems to be an effective biofilm disruptor. This may be related to interference with cell–cell aggregation, as treatment of planktonic MRSA cultures with GRA leads to a significant reduction in micro-aggregation. The dispersive nature of GRA on MRSA biofilms may prove valuable for treatment of such infections and could be used to increase susceptibility to complementary antibiotic therapeutics. 
    more » « less
  5. ABSTRACT Plant-derived aldehydes are constituents of essential oils that possess broad-spectrum antimicrobial activity and kill microorganisms without promoting resistance. In our previous study, we incorporated p -anisaldehyde from star anise into a polymer network called proantimicrobial networks via degradable acetals (PANDAs) and used it as a novel drug delivery platform. PANDAs released p -anisaldehyde upon a change in pH and humidity and controlled the growth of the multidrug-resistant pathogen Pseudomonas aeruginosa PAO1. In this study, we identified the cellular pathways targeted by p -anisaldehyde by generating 10,000 transposon mutants of PAO1 and screened them for hypersensitivity to p -anisaldehyde. To improve the antimicrobial efficacy of p -anisaldehyde, we combined it with epigallocatechin gallate (EGCG), a polyphenol from green tea, and demonstrated that it acts synergistically with p -anisaldehyde in killing P. aeruginosa . We then used transcriptome sequencing to profile the responses of P. aeruginosa to p -anisaldehyde, EGCG, and their combination. The exposure to p -anisaldehyde altered the expression of genes involved in modification of the cell envelope, membrane transport, drug efflux, energy metabolism, molybdenum cofactor biosynthesis, and the stress response. We also demonstrate that the addition of EGCG reversed many p -anisaldehyde-coping effects and induced oxidative stress. Our results provide insight into the antimicrobial activity of p -anisaldehyde and its interactions with EGCG and may aid in the rational identification of new synergistically acting combinations of plant metabolites. Our study also confirms the utility of the thiol-ene polymer platform for the sustained and effective delivery of hydrophobic and volatile antimicrobial compounds. IMPORTANCE Essential oils (EOs) are plant-derived products that have long been exploited for their antimicrobial activities in medicine, agriculture, and food preservation. EOs represent a promising alternative to conventional antibiotics due to their broad-range antimicrobial activity, low toxicity to human commensal bacteria, and capacity to kill microorganisms without promoting resistance. Despite the progress in the understanding of the biological activity of EOs, our understanding of many aspects of their mode of action remains inconclusive. The overarching aim of this work was to address these gaps by studying the molecular interactions between an antimicrobial plant aldehyde and the opportunistic human pathogen Pseudomonas aeruginosa . The results of this study identify the microbial genes and associated pathways involved in the response to antimicrobial phytoaldehydes and provide insights into the molecular mechanisms governing the synergistic effects of individual constituents within essential oils. 
    more » « less