skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Classifying Unimanual and Bimanual Upper Extremity Tasks in Individuals Post-Stroke
After stroke, many individuals develop impairments that lead to compensatory motions. Compensation allows individuals to achieve tasks but has long-term detrimental effects and represents maladaptive motor strategies. Increased use of bimanual motions may serve as a biomarker for recovery (and the reduction of reliance on compensatory motion), and tracking such motion using sensor data may provide critical data for health care specialists. However, past work by the authors demonstrated individual variation in motor strategies results in noisy and chaotic sensor data. The goal of the current work is to develop classifiers capable of differentiating unimanual, bimanaual asymmetric, and bimanual symmetric gestures using wearable sensor data. Twenty participants post-stroke (and 20 age-matched controls) performed a set of tasks under the supervision of a trained occupational therapist. Sensor data were recorded for each task. Classifiers were developed using artificial neural networks (ANNs) as a baseline, and the echo state neural network (ESNN) which has demonstrated efficacy with chaotic data. We find that, for control and post-stroke participants, the ESNN results in improved testing accuracy performance (91.3% and 80.3%, respectively). These results suggest a novel method for classifying gestures in individuals post-stroke, and the developed classifiers may facilitate longitudinal monitoring and correction of compensatory motion.  more » « less
Award ID(s):
2054191
PAR ID:
10334544
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Page Range / eLocation ID:
6301 to 6305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective: This study quantifies EEG complexity in chronic hemiparetic stroke patients performing hierarchical motor tasks, examining the degree of contralesional motor resource recruitment in maladaptive neural responses. Approach: We applied recurrence quantification analysis (RQA) and nonlinear dynamical measures to examine spatial patterns of motor-related EEG complexity under varying shoulder abduction torque levels (20% and 40%) in both stroke survivors and healthy control participants, enabling comparative analyses of adaptive neural responses. Results: Our findings show a statistically significant increase in EEG signal complexity within the contralesional hemisphere of stroke participants, particularly under higher shoulder abduction loads. Consistent with previous studies, we observed abnormal muscle coactivation patterns between proximal and distal muscles, along with distinct shifts in EMG vector direction in stroke-impaired limbs. These shifts in coactivation patterns suggest constraints in muscle coactivation patterns resulting from losses in corticofugal projections and upregulated brainstem pathways. Significance: We introduce a novel application of RQA to quantify nonlinear EEG complexity during motor execution in chronic stroke. Unlike traditional spectral or connectivity-based EEG methods, RQA quantifies temporally evolving, nonlinear recurrence patterns that reflect maladaptive contralesional motor recruitment. Our findings demonstrate that increased EEG complexity correlates with impaired motor control and reliance on compensatory pathways, offering new insight into neural reorganization after stroke. These results position RQA as a promising, clinically meaningful, and computationally efficient tool to evaluate cortical dynamics and guide targeted neurorehabilitation strategies aimed at minimizing maladaptive plasticity. 
    more » « less
  2. null (Ed.)
    Individuals post stroke experience motor impair- ments, such as loss of independent joint control, weakness, and delayed movement initiation, leading to an overall reduction in arm function. Their motion becomes slower and more discoordinated, making it difficult to complete timing- sensitive tasks, such as balancing a glass of water or carrying a bowl with a ball inside it. Understanding how the stroke- induced motor impairments interact with each other can help design assisted training regimens for improved recovery. In this study, we investigate the effects of abnormal joint coupling patterns induced by flexion synergy on timing-sensitive motor coordination in the paretic upper limb. We design a virtual ball-in-bowl task that requires fast movements for optimal performance and implement it on a robotic system, capable of providing varying levels of abduction loading at the shoulder. We recruit 12 participants (6 individuals with chronic stroke and 6 unimpaired controls) and assess their skill at the task at 3 levels of loading, defined by the vertical force applied at the robot end-effector. Our results show that, for individuals with stroke, loading has a significant effect on their ability to generate quick coordinated motion. With increases in loading, their overall task performance decreases and they are less able to compensate for ball dynamics—frequency analysis of their motion indicates that abduction loading weakens their ability to generate movements at the resonant frequency of the dynamic task. This effect is likely due to an increased reliance on lower resolution indirect motor pathways in individuals post stroke. Given the inter-dependency of loading and dynamic task performance, we can create targeted robot-aided training protocols focused on improving timing-sensitive motor control, similar to existing progressive loading therapies, which have shown efficacy for expanding reachable workspace post stroke. 
    more » « less
  3. Abstract Background Individuals with hemiparesis post-stroke often have difficulty with tasks requiring upper extremity (UE) intra- and interlimb use, yet methods to quantify both are limited. Objective To develop a quantitative yet sensitive method to identify distinct features of UE intra- and interlimb use during task performance. Methods Twenty adults post-stroke and 20 controls wore five inertial sensors (wrists, upper arms, sternum) during 12 seated UE tasks. Three sensor modalities (acceleration, angular rate of change, orientation) were examined for three metrics (peak to peak amplitude, time, and frequency). To allow for comparison between sensor data, the resultant values were combined into one motion parameter, per sensor pair, using a novel algorithm. This motion parameter was compared in a group-by-task analysis of variance as a similarity score (0–1) between key sensor pairs: sternum to wrist, wrist to wrist, and wrist to upper arm. A use ratio (paretic/non-paretic arm) was calculated in persons post-stroke from wrist sensor data for each modality and compared to scores from the Adult Assisting Hand Assessment (Ad-AHA Stroke) and UE Fugl-Meyer (UEFM). Results A significant group × task interaction in the similarity score was found for all key sensor pairs. Post-hoc tests between task type revealed significant differences in similarity for sensor pairs in 8/9 comparisons for controls and 3/9 comparisons for persons post stroke. The use ratio was significantly predictive of the Ad-AHA Stroke and UEFM scores for each modality. Conclusions Our algorithm and sensor data analyses distinguished task type within and between groups and were predictive of clinical scores. Future work will assess reliability and validity of this novel metric to allow development of an easy-to-use app for clinicians. 
    more » « less
  4. null (Ed.)
    An important problem in designing human-robot systems is the integration of human intent and performance in the robotic control loop, especially in complex tasks. Bimanual coordination is a complex human behavior that is critical in many fine motor tasks, including robot-assisted surgery. To fully leverage the capabilities of the robot as an intelligent and assistive agent, online recognition of bimanual coordination could be important. Robotic assistance for a suturing task, for example, will be fundamentally different during phases when the suture is wrapped around the instrument (i.e., making a c- loop), than when the ends of the suture are pulled apart. In this study, we develop an online recognition method of bimanual coordination modes (i.e., the directions and symmetries of right and left hand movements) using geometric descriptors of hand motion. We (1) develop this framework based on ideal trajectories obtained during virtual 2D bimanual path following tasks performed by human subjects operating Geomagic Touch haptic devices, (2) test the offline recognition accuracy of bi- manual direction and symmetry from human subject movement trials, and (3) evalaute how the framework can be used to characterize 3D trajectories of the da Vinci Surgical System’s surgeon-side manipulators during bimanual surgical training tasks. In the human subject trials, our geometric bimanual movement classification accuracy was 92.3% for movement direction (i.e., hands moving together, parallel, or away) and 86.0% for symmetry (e.g., mirror or point symmetry). We also show that this approach can be used for online classification of different bimanual coordination modes during needle transfer, making a C loop, and suture pulling gestures on the da Vinci system, with results matching the expected modes. Finally, we discuss how these online estimates are sensitive to task environment factors and surgeon expertise, and thus inspire future work that could leverage adaptive control strategies to enhance user skill during robot-assisted surgery. 
    more » « less
  5. Brain-machine interfaces (BMIs) have become increasingly popular in restoring the lost motor function in individuals with disabilities. Several research studies suggest that the CNS may employ synergies or movement primitives to reduce the complexity of control rather than controlling each DoF independently, and the synergies can be used as an optimal control mechanism by the CNS in simplifying and achieving complex movements. Our group has previously demonstrated neural decoding of synergy-based hand movements and used synergies effectively in driving hand exoskeletons. In this study, ten healthy right-handed participants were asked to perform six types of hand grasps representative of the activities of daily living while their neural activities were recorded using electroencephalography (EEG). From half of the participants, hand kinematic synergies were derived, and a neural decoder was developed, based on the correlation between hand synergies and corresponding cortical activity, using multivariate linear regression. Using the synergies and the neural decoder derived from the first half of the participants and only cortical activities from the remaining half of the participants, their hand kinematics were reconstructed with an average accuracy above 70%. Potential applications of synergy-based BMIs for controlling assistive devices in individuals with upper limb motor deficits, implications of the results in individuals with stroke and the limitations of the study were discussed. 
    more » « less