After stroke, many individuals develop impairments that lead to compensatory motions. Compensation allows individuals to achieve tasks but has long-term detrimental effects and represents maladaptive motor strategies. Increased use of bimanual motions may serve as a biomarker for recovery (and the reduction of reliance on compensatory motion), and tracking such motion using sensor data may provide critical data for health care specialists. However, past work by the authors demonstrated individual variation in motor strategies results in noisy and chaotic sensor data. The goal of the current work is to develop classifiers capable of differentiating unimanual, bimanaual asymmetric, and bimanual symmetric gestures using wearable sensor data. Twenty participants post-stroke (and 20 age-matched controls) performed a set of tasks under the supervision of a trained occupational therapist. Sensor data were recorded for each task. Classifiers were developed using artificial neural networks (ANNs) as a baseline, and the echo state neural network (ESNN) which has demonstrated efficacy with chaotic data. We find that, for control and post-stroke participants, the ESNN results in improved testing accuracy performance (91.3% and 80.3%, respectively). These results suggest a novel method for classifying gestures in individuals post-stroke, and the developed classifiers may facilitate longitudinal monitoring and correction of compensatory motion.
more »
« less
Shoulder abduction loading affects motor coordination in individuals with chronic stroke, informing targeted rehabilitation
Individuals post stroke experience motor impair- ments, such as loss of independent joint control, weakness, and delayed movement initiation, leading to an overall reduction in arm function. Their motion becomes slower and more discoordinated, making it difficult to complete timing- sensitive tasks, such as balancing a glass of water or carrying a bowl with a ball inside it. Understanding how the stroke- induced motor impairments interact with each other can help design assisted training regimens for improved recovery. In this study, we investigate the effects of abnormal joint coupling patterns induced by flexion synergy on timing-sensitive motor coordination in the paretic upper limb. We design a virtual ball-in-bowl task that requires fast movements for optimal performance and implement it on a robotic system, capable of providing varying levels of abduction loading at the shoulder. We recruit 12 participants (6 individuals with chronic stroke and 6 unimpaired controls) and assess their skill at the task at 3 levels of loading, defined by the vertical force applied at the robot end-effector. Our results show that, for individuals with stroke, loading has a significant effect on their ability to generate quick coordinated motion. With increases in loading, their overall task performance decreases and they are less able to compensate for ball dynamics—frequency analysis of their motion indicates that abduction loading weakens their ability to generate movements at the resonant frequency of the dynamic task. This effect is likely due to an increased reliance on lower resolution indirect motor pathways in individuals post stroke. Given the inter-dependency of loading and dynamic task performance, we can create targeted robot-aided training protocols focused on improving timing-sensitive motor control, similar to existing progressive loading therapies, which have shown efficacy for expanding reachable workspace post stroke.
more »
« less
- Award ID(s):
- 1637764
- PAR ID:
- 10301517
- Date Published:
- Journal Name:
- 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob)
- Page Range / eLocation ID:
- 1010 to 1017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Affecting muscle spasticity, strength, and coordination, stroke results in alterations to muscle control and ability to compensate from unexpected perturbations. Post-stroke, upper extremity movements are heavily modified from perturbations, which increase the difficulty of activities of daily living (ADLs). Postural responses from upper extremity perturbations in healthy and stroke populations have been examined in movements constrained to 2D planar motion, and may provide insight as an assessment tool to help inform therapists to better structure rehabilitation training regimens towards individualized health care for improved long-term outcomes. However, implications on constraining motion in the horizontal plane are not clear and may reduce the generalizability of the findings to the movement through unconstrained 3D space necessary for ADLs. In this paper, we explore the effects of joint perturbations on the elbow and shoulder in unconstrained, gravity-compensated position holding tasks. We present a metric-diverse, dynamic task framework building upon previous 2D experiments designed to better assess rehabilitative efforts in movement trajectories with applied gravity compensation in three dimensional space aimed towards the generalizability of 3D motion. Results suggest that motion of multi-DoF joints display varied movement qualities in 3D space with robotic gravity compensation when compared to constrained planar movements.more » « less
-
Abstract Background Individuals with hemiparesis post-stroke often have difficulty with tasks requiring upper extremity (UE) intra- and interlimb use, yet methods to quantify both are limited. Objective To develop a quantitative yet sensitive method to identify distinct features of UE intra- and interlimb use during task performance. Methods Twenty adults post-stroke and 20 controls wore five inertial sensors (wrists, upper arms, sternum) during 12 seated UE tasks. Three sensor modalities (acceleration, angular rate of change, orientation) were examined for three metrics (peak to peak amplitude, time, and frequency). To allow for comparison between sensor data, the resultant values were combined into one motion parameter, per sensor pair, using a novel algorithm. This motion parameter was compared in a group-by-task analysis of variance as a similarity score (0–1) between key sensor pairs: sternum to wrist, wrist to wrist, and wrist to upper arm. A use ratio (paretic/non-paretic arm) was calculated in persons post-stroke from wrist sensor data for each modality and compared to scores from the Adult Assisting Hand Assessment (Ad-AHA Stroke) and UE Fugl-Meyer (UEFM). Results A significant group × task interaction in the similarity score was found for all key sensor pairs. Post-hoc tests between task type revealed significant differences in similarity for sensor pairs in 8/9 comparisons for controls and 3/9 comparisons for persons post stroke. The use ratio was significantly predictive of the Ad-AHA Stroke and UEFM scores for each modality. Conclusions Our algorithm and sensor data analyses distinguished task type within and between groups and were predictive of clinical scores. Future work will assess reliability and validity of this novel metric to allow development of an easy-to-use app for clinicians.more » « less
-
Precise timing underlies many behaviors, from musical performance to navigating a dynamic environment. This study examined how stable temporal patterns that emerge during goal-directed movements influence timing acuity in perceptual discrimination. Rather than relying on explicitly timed actions, we used a selfpaced throwing task in which temporal structure develops implicitly with practice. Across three experiments, participants were trained for four days, developing stable motor timing reflected in consistent ‘‘ball release times.’’ This emergent timing selectively enhanced sensitivity to matching temporal intervals in a perceptual discrimination task. Importantly, this effect was not explained by perceptual learning and persisted over several weeks, suggesting a durable motor-perceptual linkage. The results point to a shared representation of time in action and perception, an emergent timing primitive that arises through experience in spatiotemporal movements. These findings shed light on how motor learning can shape temporal perception in ecologically relevant contexts, with implications for rehabilitation and sensorimotor integration.more » « less
-
Quantitative assessment of movement using motion capture provides insights on mobility which are not evident from clinical evaluation. Here, in older individuals that were healthy or had suffered a stroke, we aimed to investigate their balance in terms of changes in body kinematics and muscle activity. Our research question involved determining the effects on post- compared to pre-sensorimotor training exercises on maintaining or improving balance. Our research hypothesis was that training would improve the gait and balance by increasing joint angles and extensor muscle activities in lower extremities and spatiotemporal measures of stroke and elderly people. This manuscript describes a motion capture-based evaluation protocol to assess joint angles and spatiotemporal parameters (cadence, step length and walking speed), as well as major extensor and flexor muscle activities. We also conducted a case study on a healthy older participant (male, age, 65) and an older participant with chronic stroke (female, age, 55). Both participants performed a walking task along a path with a rectangular shape which included tandem walking forward, right side stepping, tandem walking backward, left side stepping to the starting location. For the stroke participant, the training improved the task completion time by 19 s. Her impaired left leg had improved step length (by 0.197 m) and cadence (by 10 steps/min) when walking forward, and cadence (by 12 steps/min) when walking backward. The non-impaired right leg improved cadence when walking forward (by 15 steps/min) and backward (by 27 steps/min). The joint range of motion (ROM) did not change in most cases. However, the ROM of the hip joint increased significantly by 5.8 degrees (p = 0.019) on the left leg side whereas the ROMs of hip joint and knee joint increased significantly by 4.1 degrees (p = 0.046) and 8.1 degrees (p = 0.007) on the right leg side during backward walking. For the healthy participant, the significant changes were only found in his right knee joint ROM having increased by 4.2 degrees (p = 0.031) and in his left ankle joint ROM having increased by 5.5 degrees (p = 0.006) during the left side stepping.more » « less
An official website of the United States government

