skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tissue Viscoelasticity Quantification using Smartphone Tactile Imaging Probe with an Indenter and Tissue Pitting Recovery Model
Viscoelasticity of human tissue often carries important physiological information linking to many fatal diseases, such as heart failure, renal impairment, and liver failure. Fluid retention due to these diseases cause swelling of body parts (edema) and changes the viscoelastic characteristic of the tissue. We hypothesize that the viscoelastic behavior change of the tissue can be estimated by creating and quantifying the pit on the swelled body parts. Here, we present a smartphone tactile imaging probe with an indenter (STIP-I) system that measures the pitting parameters and characterizes the viscoelastic behavior. This system consists of tactile imaging sensing that utilizes a light diffusion in a polydimethylsiloxane (PDMS)-based optical waveguide and a Viscoelastic Pitting Recovery (VPR) computation model. The prototype STIP-I system is tested using edematous tissue phantoms, which show a moderate measurement error of 29.5% for the pitting parameters and excellent performance of 7.60 % error in elastic modulus estimation. The STIP-I system is expected to bring a new approach to understanding viscoelasticity changes due to various diseases.  more » « less
Award ID(s):
2114675
PAR ID:
10334558
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE sensors journal
ISSN:
1558-1748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper examines the effect of viscoelasticity on the periodic response of a lumped parameter viscoelastic von Mises truss. The viscoelastic system is described by a second-order equation that governs the mechanical motion coupled to a first-order equation that governs the time evolution of the viscoelastic forces. The viscoelastic force evolves at a much slower rate than the elastic oscillations in the system. This adds additional time scales and degrees of freedom to the system compared to its viscous counterparts. The focus of this study is on the system’s behavior under harmonic loading, which is expected to show both regular and chaotic dynamics for certain combinations of forcing frequency and amplitude. While the presence of chaos in this system has already been demonstrated, we shall concentrate only on the periodic solutions. The presence of the intrawell and interwell periodic oscillations is revealed using the Harmonic Balance method. The study also looks at the influence of parameter changes on the system’s behavior through bifurcation diagrams, which enable us to identify optimal system parameters for maximum energy dissipation. Lastly, we formulate an equivalent viscous system using an energy-based approach. We observe that a naive viscous model fails to capture the behavior accurately depending on the system and excitation parameters, as well as the type of excitation. This underscores the necessity to study the full-scale viscoelastic system. 
    more » « less
  2. Unlike traditional structural materials, soft solids can often sustain very large deformation before failure, and many exhibit nonlinear viscoelastic behavior. Modeling nonlinear viscoelasticity is a challenging problem for a number of reasons. In particular, a large number of material parameters are needed to capture material response and validation of models can be hindered by limited amounts of experimental data available. We have developed a Gaussian Process (GP) approach to determine the material parameters of a constitutive model describing the mechanical behavior of a soft, viscoelastic PVA hydrogel. A large number of stress histories generated by the constitutive model constitute the training sets. The low-rank representations of stress histories by Singular Value Decomposition (SVD) are taken to be random variables which can be modeled via Gaussian Processes with respect to the material parameters of the constitutive model. We obtain optimal material parameters by minimizing an objective function over the input set. We find that there are many good sets of parameters. Further the process reveals relationships between the model parameters. Results so far show that GP has great potential in fitting constitutive models. 
    more » « less
  3. Abstract Transforming growth factor (TGF)‐β1 is a multifunctional cytokine that plays important roles in health and disease. Previous studies have revealed that TGFβ1 activation, signaling, and downstream cell responses including epithelial‐mesenchymal transition (EMT) and apoptosis are regulated by the elasticity or stiffness of the extracellular matrix. However, tissues within the body are not purely elastic, rather they are viscoelastic. How matrix viscoelasticity impacts cell fate decisions downstream of TGFβ1 remains unknown. Here, we synthesized polyacrylamide hydrogels that mimic the viscoelastic properties of breast tumor tissue. We found that increasing matrix viscous dissipation reduces TGFβ1‐induced cell spreading, F‐actin stress fiber formation, and EMT‐associated gene expression changes, and promotes TGFβ1‐induced apoptosis in mammary epithelial cells. Furthermore, TGFβ1‐induced expression of integrin linked kinase (ILK) and colocalization of ILK with vinculin at cell adhesions is attenuated in mammary epithelial cells cultured on viscoelastic substrata in comparison to cells cultured on nearly elastic substrata. Overexpression of ILK promotes TGFβ1‐induced EMT and reduces apoptosis in cells cultured on viscoelastic substrata, suggesting that ILK plays an important role in regulating cell fate downstream of TGFβ1 in response to matrix viscoelasticity. 
    more » « less
  4. Abstract Objective. Motivated by the diagnostic value of tissue viscosity beyond elasticity, the goal of this work is to develop robust methodologies based on shear wave elastography (SWE) to reconstruct combined elasticity and viscosity maps of soft tissues out of the measurement plane.Approach.Building on recent advancements in full-waveform inversion in reconstructing elasticity maps beyond the measurement plane, we propose to reconstruct a complete viscoelasticity map by novel combination of three ideas: (a) multiresolution imaging, where lower frequency content is used to reconstruct low resolution map, which is then utilized as a starting point for higher resolution reconstruction by including higher frequency content; (b) acquiring SWE data on multiple planes from multiple pushes, one at a time, and then simultaneously using all the data to invert for a single viscoelasticity map; (c) sequential reconstruction where combined viscoelasticity reconstruction is followed by fixing the elasticity map (and thus kinematics), and repeating the reconstruction but just for the viscosity map.Main results.We examine the proposed methodology using synthetic SWE data to reconstruct the viscoelastic properties of both homogeneous and heterogeneous tumor-like inclusions with shear modulus ranging from 3 to 20 kPa, and viscosity ranging from 1 to 3 Pa·s. Final validation is performedin silico, where the annular inclusion is reconstructed using noisy data with varying signal-to-noise ratios (SNR) of 30, 20 and 10 dB. While elasticity images are reasonably reconstructed even for poor SNR of 10 dB, viscosity imaging seem to require better SNR.Significance.This work, analogous to reconstructing 3D images from 2D measurements, offers a feasibility study for achieving 3D viscoelasticity reconstructions using conventional ultrasound scanners, potentially leading to biomarkers with greater specificity compared to currently available 2D elasticity images. 
    more » « less
  5. Kristin S. Miller. (Ed.)
    Abstract Cardiomyocytes are viscoelastic and key determinants of right ventricle (RV) mechanics. Intracellularly, microtubules are found to impact the viscoelasticity of isolated cardiomyocytes or trabeculae; whether they contribute to the tissue-level viscoelasticity is unknown. Our goal was to reveal the role of the microtubule network in the passive anisotropic viscoelasticity of the healthy RV. Equibiaxial stress relaxation tests were conducted in healthy RV free wall (RVFW) under early (6%) and end (15%) diastolic strain levels, and at sub- and physiological stretch rates. The viscoelasticity was assessed at baseline and after the removal of microtubule network. Furthermore, a quasi-linear viscoelastic (QLV) model was applied to delineate the contribution of microtubules to the relaxation behavior of RVFW. After removing the microtubule network, RVFW elasticity and viscosity were reduced at the early diastolic strain level and in both directions. The reduction in elasticity was stronger in the longitudinal direction, whereas the degree of changes in viscosity were equivalent between directions. There was insignificant change in RVFW viscoelasticity at late diastolic strain level. Finally, the modeling showed that the tissue's relaxation strength was reduced by the removal of the microtubule network, but the change was present only at a later time scale. These new findings suggest a critical role of cytoskeleton filaments in RVFW passive mechanics in physiological conditions. 
    more » « less