skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: AFFECTIVE PALETTES FOR SCIENTIFIC VISUALIZATION: GROUNDING ENVIRONMENTAL DATA IN THE NATURAL WORLD
As computing capacity increases and data grows in both size and complexity, we are capable of understanding our surroundings with increas- ing nuance. Visualizing this often-multivariate environmental data presents complex visual scenes to be navigated, parsed, analyzed, and communicated. We draw from both the natural world and artistic color theory to present 1) a new color system, designed to establish an af- fective connection between big environmental data and its original source material, 2) a tool for extracting these workable palettes from natural imagery, and 3) a selection of pre-made linear colormaps and discrete color sets drawn from natural environments.  more » « less
Award ID(s):
1704904 1704604
NSF-PAR ID:
10334560
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE Vis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phenotypic differences among individuals are often linked to differential survival and mating success. Quantifying the relative influence of genetic and environmental variation on phenotype allows evolutionary biologists to make predictions about the potential for a given trait to respond to selection and various aspects of environmental variation. In particular, the environment individuals experience during early development can have lasting effects on phenotype later in life. Here, we used a natural full‐sib/half‐sib design as well as within‐individual longitudinal analyses to examine genetic and various environmental influences on plumage color. We find that variation in melanin‐based plumage color – a trait known to influence mating success in adult North American barn swallows (Hirundo rustica erythrogaster)is influenced by both genetics and aspects of the developmental environment, including variation due to the maternal phenotype and the nest environment. Within individuals, nestling color is predictive of adult color. Accordingly, these early environmental influences are relevant to the sexually selected plumage color variation in adults. Early environmental conditions appear to have important lifelong implications for individual reproductive performance through sexual signal development in barn swallows. Our results indicate that feather color variation conveys information about developmental conditions and maternal care alleles to potential mates in North American barn swallows. Melanin‐based colors are used for sexual signaling in many organisms, and our study suggests that these signals may be more sensitive to environmental variation than previously thought.

     
    more » « less
  2. Abstract

    Despite its far-reaching implications for conservation and natural resource management, little is known about the color of environmental noise, or the structure of temporal autocorrelation in random environmental variation, in streams and rivers. Here, we analyze the geography, drivers, and timescale-dependence of noise color in streamflow across the U.S. hydrography, using streamflow time series from 7504 gages. We find that daily and annual flows are dominated by red and white spectra respectively, and spatial variation in noise color is explained by a combination of geographic, hydroclimatic, and anthropogenic variables. Noise color at the daily scale is influenced by stream network position, and land use and water management explain around one third of the spatial variation in noise color irrespective of the timescale considered. Our results highlight the peculiarities of environmental variation regimes in riverine systems, and reveal a strong human fingerprint on the stochastic patterns of streamflow variation in river networks.

     
    more » « less
  3. Abstract

    Color morphing refers to color change in response to an environmental stimulus. Photochromic materials allow color morphing in response to light, but almost all photochromic materials suffer from degradation when exposed to moist/humid environments or harsh chemical environments. One way of overcoming this challenge is by imparting chemical shielding to the color morphing materials via superomniphobicity. However, simultaneously imparting color morphing and superomniphobicity, both surface properties, requires a rational design. In this work, we systematically design color morphing surfaces with superomniphobicity through an appropriate combination of a photochromic dye, a low surface energy material, and a polymer in a suitable solvent (for one-pot synthesis), applied through spray coating (for the desired texture). We also investigate the influence of polymer polarity and material composition on color morphing kinetics and superomniphobicity. Our color morphing surfaces with effective chemical shielding can be designed with a wide variety of photochromic and thermochromic pigments and applied on a wide variety of substrates. We envision that such surfaces will have a wide range of applications including camouflage soldier fabrics/apparel for chem-bio warfare, color morphing soft robots, rewritable color patterns, optical data storage, and ophthalmic sun screening.

     
    more » « less
  4. Abstract With novel human–wildlife interaction, predation regimes, and environmental conditions, in addition to often fragmented and smaller populations, urban areas present wildlife with altered natural selection parameters and genetic drift potential compared with nonurban regions. Plumage and pelage coloration in birds and mammals has evolved as a balance between avoiding detection by predator or prey, sexual selection, and thermoregulation. However, with altered mutation rates, reduced predation risk, increased temperatures, strong genetic drift, and increased interaction with people, the evolutionary contexts in which these colorations arose are radically different from what is present in urban areas. Regionally alternative color morphs or leucistic or melanistic individuals that aren't typical of most avian or mammalian populations may become more frequent as a result of adaptive or neutral evolution. Therefore, I conceptualize that, in urban areas, conspicuous color morphologies may persist, leading to an increase in the frequency of regionally atypical pelage coloration. In the present article, I discuss the potential for conspicuous color morphs to arise and persist in urban mammalian and avian populations, as well as the mechanisms for such persistence, as a result of altered environmental conditions and natural selection pressures. 
    more » « less
  5. The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding. 
    more » « less