Abstract This study describes a new mechanism governing the diurnal variation of vertical motion in tropical oceanic heavy rainfall zones, such as the intertropical convergence zone. In such regions, the diurnal heating of widespread anvil clouds due to shortwave radiative absorption enhances upward motion in these upper layers in the afternoon. This radiatively driven ascent promotes an afternoon maximum of anvil clouds, indicating a diurnal cloud‐radiative feedback. The opposite occurs at nighttime: While rainfall exhibits a dominant peak at night‐early morning, the boundary layer rooted upward motion and latent heating tied to this peak are forced to be more bottom heavy by the nighttime anomalous radiative cooling at upper levels. This mechanism therefore favors the stratiform top‐heavy heating mode during daytime and suppresses it nocturnally. These diurnal circulation signatures arise from microphysical‐radiative feedbacks that manifest on the scales of organized deep convection, which may ultimately impact the daily mean radiation budget. 
                        more » 
                        « less   
                    
                            
                            Diurnal Differences in Tropical Maritime Anvil Cloud Evolution
                        
                    
    
            Abstract Satellite observations of tropical maritime convection indicate an afternoon maximum in anvil cloud fraction that cannot be explained by the diurnal cycle of deep convection peaking at night. We use idealized cloud-resolving model simulations of single anvil cloud evolution pathways, initialized at different times of the day, to show that tropical anvil clouds formed during the day are more widespread and longer lasting than those formed at night. This diurnal difference is caused by shortwave radiative heating, which lofts and spreads anvil clouds via a mesoscale circulation that is largely absent at night, when a different, longwave-driven circulation dominates. The nighttime circulation entrains dry environmental air that erodes cloud top and shortens anvil lifetime. Increased ice nucleation in more turbulent nighttime conditions supported by the longwave cloud-top cooling and cloud-base heating dipole cannot compensate for the effect of diurnal shortwave radiative heating. Radiative–convective equilibrium simulations with a realistic diurnal cycle of insolation confirm the crucial role of shortwave heating in lofting and sustaining anvil clouds. The shortwave-driven mesoscale ascent leads to daytime anvils with larger ice crystal size, number concentration, and water content at cloud top than their nighttime counterparts. Significance Statement Deep convective activity and rainfall peak at night over the tropical oceans. However, anvil clouds that originate from the tops of deep convective clouds reach their largest extent in the afternoon hours. We study the underlying physical mechanisms that lead to this discrepancy by simulating the evolution of anvil clouds with a high-resolution model. We find that the absorption of sunlight by ice crystals lofts and spreads the daytime anvil clouds over a larger area, increasing their lifetime, changing their properties, and thus influencing their impact on climate. Our findings show that it is important not only to simulate the correct onset of deep convection but also to correctly represent anvil cloud evolution for skillful simulations of the tropical energy balance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1743753
- PAR ID:
- 10334638
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 35
- Issue:
- 5
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 1655 to 1677
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Observations of the diurnal cycle in tropical cyclones (TCs) systematically indicate a ∼12‐hr offset between peak rainfall rate and the maximum height of anvil clouds in the TC cloud canopy. This phasing conflicts with archetypal models of organized deep convection, which suggest a tight coupling between rainfall, vertical cloud growth, and anvil clouds. We show that this phasing owes to the bimodal diurnal evolution of the transverse circulation, which peaks nocturnally from low–midlevels, and during daytime in the upper troposphere. The bottom‐heavy nocturnal circulation state is driven by latent heating from nocturnally invigorated deep convection, while the top‐heavy daytime state is the thermally direct circulation response to strong shortwave‐cloud warming in the optically thick TC cloud canopy. This daytime upper‐level circulation response manifests in a lifting of the maximum height of the TC outflow and, in turn, a lifting and invigoration of the upper‐level anvil clouds of the TC cloud canopy.more » « less
- 
            Abstract Organized deep convective activity has been routinely monitored by satellite precipitation radar from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM). Organized deep convective activity is found to increase not only with sea surface temperature (SST) above 27°C, but also with low-level wind shear. Precipitation shows a similar increasing relationship with both SST and low-level wind shear, except for the highest low-level wind shear. These observations suggest that the threshold for organized deep convection and precipitation in the tropics should consider not only SST, but also vertical wind shear. The longwave cloud radiative feedback, measured as the tropospheric longwave cloud radiative heating per amount of precipitation, is found to generally increase with stronger organized deep convective activity as SST and low-level wind shear increase. Organized deep convective activity, the longwave cloud radiative feedback, and cirrus ice cloud cover per amount of precipitation also appear to be controlled more strongly by SST than by the deviation of SST from its tropical mean. This study hints at the importance of non-thermodynamic factors such as vertical wind shear for impacting tropical convective structure, cloud properties, and associated radiative energy budget of the tropics. Significance StatementThis study uses tropical satellite observations to demonstrate that vertical wind shear affects the relationship between sea surface temperature and tropical organized deep convection and precipitation. Shear also affects associated cloud properties and how clouds affect the flow of radiation in the atmosphere. Although how vertical wind shear affects convective organization has long been studied in the mesoscale community, the study attempts to apply mesoscale theory to explain the large-scale mean organization of tropical deep convection, cloud properties, and radiative feedbacks. The study also provides a quantitative observational baseline of how vertical wind shear modifies cloud radiative effects and convective organization, which can be compared to numerical simulations.more » « less
- 
            Deep convective clouds (DCCs) are associated with the vertical ascent of air from the lower to the upper atmosphere. They appear in various forms such as thunderstorms, supercells, and squall lines. These convective systems play important roles in the hydrological cycle, Earth’s radiative budget, and the general circulation of the atmosphere. Changes in aerosol (both cloud condensation nuclei and ice-nucleating particles) affect cloud microphysics and dynamics, and thereby influence convective intensity, precipitation, and the radiative effects of deep clouds and their cirrus anvils. However, the very complex dynamics and cloud microphysics of DCCs means that many of these processes are not yet accurately quantified in observations and models. This chapter outlines the main ways in which changes in aerosol affect the microphysical, dynamical, and radiative properties of DCCs. Aerosol interactions with DCCs depend on aerosol properties, storm dynamics, and meteorological conditions. When aerosol particles are light-absorbing, such as soot from industry or biomass burning, the aerosol radiative effects can alter the meteorological conditions under which DCCs form. These radiative effects modify temperature profiles and planetary boundary layer heights, thus changing atmospheric stability and circulation, and affecting the onset and development of DCCs. These large-scale effects, such as the effect of anthropogenic aerosol on the East and South Asian monsoons, can be simulated in coarse-resolution models. These processes are described in Chapter 13. This chapter is concerned with aerosol interactions with DCC systems ranging from individual clouds to mesoscale convective systems. Increases in cloud condensation nuclei (CCN) can enhance cloud droplet number concentrations and decrease droplet sizes, thereby narrowing the droplet size spectrum. For DCCs, a narrowed droplet size spectrum suppresses warm rain formation (rain derived from non-ice-phase processes), allowing the transport of more, smaller droplets to altitudes below 0°C. This may result in (i) freezing of more supercooled water, thereby enhancing latent heating from icerelated microphysical processes and invigorating storms (ice-phase invigoration); (ii) modification of ice-related microphysical processes, which changes cold pools, precipitation rates, and hailstone frequency and size; (iii) expansion of the mixed-phase zone and decreases in the cloud glaciation temperature; and (iv) slowing down of cloud dissipation, resulting in larger cloud cover and cloud depth in the stratiform and anvil regions due to numerous smaller ice particles. The increased cloud cover and cloud depth constitute an influence of aerosol on the cloud radiative effect. Reduced diurnal temperature variation has been observed and simulated as a result of enhanced daytime cooling and nighttime warming by expanded anvil cloud area in polluted environments. However, the global radiative effect of aerosol interactions with DCCs remains to be quantified.more » « less
- 
            Abstract Studies have implicated the importance of longwave (LW) cloud‐radiative forcing (CRF) in facilitating or accelerating the upscale development of tropical moist convection. While different cloud types are known to have distinct CRF, their individual roles in driving upscale development through radiative feedback is largely unexplored. Here we examine the hypothesis that CRF from stratiform regions has the greatest positive effect on upscale development of tropical convection. We do so through numerical model experiments using convection‐permitting ensemble WRF (Weather Research and Forecasting) simulations of tropical cyclone formation. Using a new column‐by‐column cloud classification scheme, we identify the contributions of five cloud types (shallow, congestus, and deep convective; and stratiform and anvil clouds). We examine their relative impacts on longwave radiation moist static energy (MSE) variance feedback and test the removal of this forcing in additional mechanism‐denial simulations. Our results indicate the importance stratiform and anvil regions in accelerating convective upscale development.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    