skip to main content

Title: Diurnal Differences in Tropical Maritime Anvil Cloud Evolution
Abstract Satellite observations of tropical maritime convection indicate an afternoon maximum in anvil cloud fraction that cannot be explained by the diurnal cycle of deep convection peaking at night. We use idealized cloud-resolving model simulations of single anvil cloud evolution pathways, initialized at different times of the day, to show that tropical anvil clouds formed during the day are more widespread and longer lasting than those formed at night. This diurnal difference is caused by shortwave radiative heating, which lofts and spreads anvil clouds via a mesoscale circulation that is largely absent at night, when a different, longwave-driven circulation dominates. The nighttime circulation entrains dry environmental air that erodes cloud top and shortens anvil lifetime. Increased ice nucleation in more turbulent nighttime conditions supported by the longwave cloud-top cooling and cloud-base heating dipole cannot compensate for the effect of diurnal shortwave radiative heating. Radiative–convective equilibrium simulations with a realistic diurnal cycle of insolation confirm the crucial role of shortwave heating in lofting and sustaining anvil clouds. The shortwave-driven mesoscale ascent leads to daytime anvils with larger ice crystal size, number concentration, and water content at cloud top than their nighttime counterparts. Significance Statement Deep convective activity and rainfall peak at more » night over the tropical oceans. However, anvil clouds that originate from the tops of deep convective clouds reach their largest extent in the afternoon hours. We study the underlying physical mechanisms that lead to this discrepancy by simulating the evolution of anvil clouds with a high-resolution model. We find that the absorption of sunlight by ice crystals lofts and spreads the daytime anvil clouds over a larger area, increasing their lifetime, changing their properties, and thus influencing their impact on climate. Our findings show that it is important not only to simulate the correct onset of deep convection but also to correctly represent anvil cloud evolution for skillful simulations of the tropical energy balance. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Climate
Page Range or eLocation-ID:
1655 to 1677
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A complete understanding of the development of tropical cyclones (TC) remains elusive and forecasting TC intensification remains challenging. This motivates further research into the physical processes that govern TC development. One process that has, until recently, been under-investigated is the role of radiation. Here, the importance of radiative feedbacks in TC development and the mechanisms underlying their influence is investigated in a set of idealized convection-permitting simulations. A TC is allowed to form after initialization from a mesoscale warm, saturated bubble on an f -plane, in an otherwise quiescent and moist neutral environment. Tropical storm formation is delayed by a factor of two or three when radiative feedbacks are removed by prescribing a fixed cooling profile or spatially homogenizing the model-calculated cooling profiles. The TC’s intensification rate is also greater when longwave radiative feedbacks are stronger. Radiative feedbacks in the context of a TC arise from interactions between spatially and temporally varying radiative heating and cooling (driven by the dependence of radiative heating and cooling rate on clouds and water vapor) and the developing TC (the circulation of which shapes the structure of clouds and water vapor). Further analysis and additional mechanism denial experiments pinpoint the longwave radiative feedbackmore »contributed by ice clouds as the strongest influence. Improving the representation of cloud-radiative feedbacks in forecast models therefore has the potential to yield critical advancements in TC prediction.« less
  2. Abstract

    Estimates for equilibrium climate sensitivity from current climate models continue to exhibit a large spread, from 2.1 to 4.7 K per carbon dioxide doubling. Recent studies have found that the treatment of precipitation efficiency in deep convective clouds—specifically the conversion rate from cloud condensate to rain Cp—may contribute to the large intermodel spread. It is common for convective parameterization in climate models to carry a constant Cp, although its values are model and resolution dependent. In this study, we investigate how introducing a potential iris feedback, the cloud–climate feedback introduced by parameterizing Cp to increase with surface temperature, affects future climate simulations within a slab ocean configuration of the Community Earth System Model. Progressively stronger dependencies of Cp on temperature unexpectedly increase the equilibrium climate sensitivity monotonically from 3.8 to up to 4.6 K. This positive iris feedback puzzle, in which a reduction in cirrus clouds increases surface temperature, is attributed to changes in the opacity of convectively detrained cirrus. Cirrus clouds reduced largely in ice content and marginally in horizontal coverage, and thus the positive shortwave cloud radiative feedback dominates. The sign of the iris feedback is robust across different cloud macrophysics schemes, which control horizontal cloud covermore »associated with detrained ice. These results suggest a potentially strong but highly uncertain connection among convective precipitation, detrained anvil cirrus, and the high cloud feedback in a climate forced by increased atmospheric carbon dioxide concentrations.

    « less
  3. The sensitivity of the climate to CO2forcing depends on spatially varying radiative feedbacks that act both locally and nonlocally. We assess whether a method employing multiple regression can be used to estimate local and nonlocal radiative feedbacks from internal variability. We test this method on millennial-length simulations performed with six coupled atmosphere–ocean general circulation models (AOGCMs). Given the spatial pattern of warming, the method does quite well at recreating the top-of-atmosphere flux response for most regions of Earth, except over the Southern Ocean where it consistently overestimates the change, leading to an overestimate of the sensitivity. For five of the six models, the method finds that local feedbacks are positive due to cloud processes, balanced by negative nonlocal shortwave cloud feedbacks associated with regions of tropical convection. For four of these models, the magnitudes of both are comparable to the Planck feedback, so that changes in the ratio between them could lead to large changes in climate sensitivity. The positive local feedback explains why observational studies that estimate spatial feedbacks using only local regressions predict an unstable climate. The method implies that sensitivity in these AOGCMs increases over time due to a reduction in the share of warming occurring inmore »tropical convecting regions and the resulting weakening of associated shortwave cloud and longwave clear-sky feedbacks. Our results provide a step toward an observational estimate of time-varying climate sensitivity by demonstrating that many aspects of spatial feedbacks appear to be the same between internal variability and the forced response.

    « less
  4. Abstract

    A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm−3. The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasingmore »CCN concentration leads to 1) a cooler free troposphere because of a reduction in the diabatic heating and 2) a warmer boundary layer because of suppressed evaporative cooling. This dipole temperature structure is associated with anomalously descending large-scale vertical motion above the boundary layer and ascending motion at lower levels. Sensitivity tests suggest that changes in convection and mean precipitation are unlikely to be caused by the impact of aerosols on cloud droplets and microphysical properties but rather by accounting for the feedback from convective adjustment with the large-scale dynamics. Furthermore, a simple scaling argument is derived based on the vertically integrated moist static energy budget, which enables estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometeors and microphysical properties is also examined, and it is consistent with the macrophysical picture.

    « less
  5. Nocturnal mesoscale convective systems (MCSs) frequently develop over the Great Plains in the presence of a nocturnal low-level jet (LLJ), which contributes to convective maintenance by providing a source of instability, convergence, and low-level vertical wind shear. Although these nocturnal MCSs often dissipate during the morning, many persist into the following afternoon despite the cessation of the LLJ with the onset of solar heating. The environmental factors enabling the postsunrise persistence of nocturnal convection are currently not well understood. A thorough investigation into the processes supporting the longevity and daytime persistence of an MCS was conducted using routine observations, RAP analyses, and a WRF-ARW simulation. Elevated nocturnal convection developed in response to enhanced frontogenesis, which quickly grew upscale into a severe quasi-linear convective system (QLCS). The western portion of this QLCS reorganized into a bow echo with a pronounced cold pool and ultimately an organized leading-line, trailing-stratiform MCS as it moved into an increasingly unstable environment. Differential advection resulting from the interaction of the nocturnal LLJ with the topography of west Texas established considerable heterogeneity in moisture, CAPE, and CIN, which influenced the structure and evolution of the MCS. An inland-advected moisture plume significantly increased near-surface CAPE during the nighttimemore »over central Texas, while the environment over southeastern Texas abruptly destabilized following the commencement of surface heating and downward moisture transport. The unique topography of the southern plains and the close proximity to the Gulf of Mexico provided an environment conducive to the postsunrise persistence of the organized MCS.

    « less