skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relaxed clustered Hawkes process for procrastination modeling in MOOCs
Hawkes processes have been shown to be efficient in modeling bursty sequences in a variety of applications, such as finance and social network activity analysis. Traditionally, these models parameterize each process independently and assume that the history of each point process can be fully observed. Such models could however be inefficient or even prohibited in certain real-world applications, such as in the field of education, where such assumptions are violated. Motivated by the problem of detecting and predicting student procrastination in students Massive Open Online Courses (MOOCs) with missing and partially observed data, in this work, we propose a novel personalized Hawkes process model (RCHawkes-Gamma) that discovers meaningful student behavior clusters by jointly learning all partially observed processes simultaneously, without relying on auxiliary features. Our experiments on both synthetic and real-world education datasets show that RCHawkes-Gamma can effectively recover student clusters and their temporal procrastination dynamics, resulting in better predictive performance of future student activities. Our further analyses of the learned parameters and their association with student delays show that the discovered student clusters unveil meaningful representations of various procrastination behaviors in students.  more » « less
Award ID(s):
1917949
PAR ID:
10334656
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Issue:
35
ISSN:
2374-3468
Page Range / eLocation ID:
4599-4607
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Procrastination, as an act of voluntarily delaying tasks, is particularly pronounced among students. Recent research has proposed several solutions to modeling student behaviors with the goal of procrastination modeling. Particularly, temporal and sequential models, such as Hawkes processes, have proven to be successful in capturing students’ behavioral dynamics as a representation of procrastination. However, these discovered dynamics are yet to be validated with psychological measures of procrastination through student self-reports and surveys. In this work, we fill this gap by discovering associations between temporal procrastination modeling in students with students’ chronic and academic procrastination levels and their goal achievement. Our analysis reveals meaningful relationships between the learning dynamics discovered by Hawkes processes with student procrastination and goal achievement based on student self-reported data. Most importantly, it shows that students who exhibit inconsistent and less regular learning activities, driven by the goal to outperform or perform not worse than other students, also reported a higher degree of procrastination. 
    more » « less
  2. Student procrastination and cramming for deadlines are major challenges in online learning environments, with negative educational and well-being side effects. Modeling student activities in continuous time and predicting their next study time are important problems that can help in creating personalized timely interventions to mitigate these challenges. However, previous attempts on dynamic modeling of student procrastination suffer from major issues: they are unable to predict the next activity times, cannot deal with missing activity history, are not personalized, and disregard important course properties, such as assignment deadlines, that are essential in explaining the cramming behavior. To resolve these problems, we introduce a new personalized stimuli-sensitive Hawkes process model (SSHP), by jointly modeling all student-assignment pairs and utilizing their similarities, to predict students’ next activity times even when there are no historical observations. Unlike regular point processes that assume a constant external triggering effect from the environment, we model three dynamic types of external stimuli, according to assignment availabilities, assignment deadlines, and each student’s time management habits. Our experiments on two synthetic datasets and two real-world datasets show a superior performance of future activity prediction, comparing with state-of-the-art models. Moreover, we show that our model achieves a flexible and accurate parameterization of activity intensities in students. 
    more » « less
  3. Procrastination is a major issue faced by students which can lead to negative impacts on their academic performance and mental health. Productivity tools aim to help individuals to alleviate this behavior by providing self-regulatory support. However, the processes of how these applications help students conquer academic procrastination are under-explored. Particularly, it is essential to understand what aspects of these applications help which kinds of students in accomplishing their academic tasks. In this paper, we address this gap by presenting an academic planning and time management app (Proccoli) and a study designed to understand the association between student procrastination modeling, in-app behaviors, and perceived performance with app evaluation. As the core of our study, we analyze student perceptions of Proccoli and its impact on their study tasks and time management skills. Then, we model student procrastination behaviors by Hawkes process mining, assess student in-app behaviors by specifying planning and performance-related measures and evaluate the relationship between student behaviors and the evaluation survey results. Our study shows a need for personalized self-regulation support in Proccoli, as students with different in-app studying behaviors are found to have different perceptions of the app functionalities and the association between the prompts for social accountability students received by using Proccoli and their procrastination behavior is significant. 
    more » « less
  4. How to cluster event sequences generated via different point processes is an interesting and important problem in statistical machine learning. To solve this problem, we propose and discuss an effective model-based clustering method based on a novel Dirichlet mixture model of a special but significant type of point processes — Hawkes process. The proposed model generates the event sequences with different clusters from the Hawkes processes with different parameters, and uses a Dirichlet distribution as the prior distribution of the clusters. We prove the identifiability of our mixture model and propose an effective variational Bayesian inference algorithm to learn our model. An adaptive inner iteration allocation strategy is designed to accelerate the convergence of our algorithm. Moreover, we investigate the sample complexity and the computational complexity of our learning algorithm in depth. Experiments on both synthetic and real-world data show that the clustering method based on our model can learn structural triggering patterns hidden in asynchronous event sequences robustly and achieve superior performance on clustering purity and consistency compared to existing methods. 
    more » « less
  5. While random permutations of point processes are useful for generating counterfactuals in bivariate interaction tests, such permutations require that the underlying intensity be separable. In many real‐world datasets where clustering or inhibition is present, such an assumption does not hold. Here, we introduce a simple combinatorial optimization algorithm that generates second‐order preserving (SOP) point process permutations, for example, permutations of the times of events such that the function of the permuted process matches the function of the data. We apply the algorithm to synthetic data generated by a self‐exciting Hawkes process and a self‐avoiding point process, along with data from Los Angeles on earthquakes and arsons and data from Indianapolis on law enforcement drug seizures and overdoses. In all cases, we are able to generate a diverse sample of permuted point processes where the distribution of the functions closely matches that of the data. We then show how SOP point process permutations can be used in two applications: (1) bivariate Knox tests and (2) data augmentation to improve deep learning‐based space‐time forecasts. 
    more » « less