skip to main content


Title: Relaxed clustered Hawkes process for procrastination modeling in MOOCs
Hawkes processes have been shown to be efficient in modeling bursty sequences in a variety of applications, such as finance and social network activity analysis. Traditionally, these models parameterize each process independently and assume that the history of each point process can be fully observed. Such models could however be inefficient or even prohibited in certain real-world applications, such as in the field of education, where such assumptions are violated. Motivated by the problem of detecting and predicting student procrastination in students Massive Open Online Courses (MOOCs) with missing and partially observed data, in this work, we propose a novel personalized Hawkes process model (RCHawkes-Gamma) that discovers meaningful student behavior clusters by jointly learning all partially observed processes simultaneously, without relying on auxiliary features. Our experiments on both synthetic and real-world education datasets show that RCHawkes-Gamma can effectively recover student clusters and their temporal procrastination dynamics, resulting in better predictive performance of future student activities. Our further analyses of the learned parameters and their association with student delays show that the discovered student clusters unveil meaningful representations of various procrastination behaviors in students.  more » « less
Award ID(s):
1917949
NSF-PAR ID:
10334656
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Issue:
35
ISSN:
2374-3468
Page Range / eLocation ID:
4599-4607
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Student procrastination and cramming for deadlines are major challenges in online learning environments, with negative educational and well-being side effects. Modeling student activities in continuous time and predicting their next study time are important problems that can help in creating personalized timely interventions to mitigate these challenges. However, previous attempts on dynamic modeling of student procrastination suffer from major issues: they are unable to predict the next activity times, cannot deal with missing activity history, are not personalized, and disregard important course properties, such as assignment deadlines, that are essential in explaining the cramming behavior. To resolve these problems, we introduce a new personalized stimuli-sensitive Hawkes process model (SSHP), by jointly modeling all student-assignment pairs and utilizing their similarities, to predict students’ next activity times even when there are no historical observations. Unlike regular point processes that assume a constant external triggering effect from the environment, we model three dynamic types of external stimuli, according to assignment availabilities, assignment deadlines, and each student’s time management habits. Our experiments on two synthetic datasets and two real-world datasets show a superior performance of future activity prediction, comparing with state-of-the-art models. Moreover, we show that our model achieves a flexible and accurate parameterization of activity intensities in students. 
    more » « less
  2. Procrastination, as an act of voluntarily delaying tasks, is particularly pronounced among students. Recent research has proposed several solutions to modeling student behaviors with the goal of procrastination modeling. Particularly, temporal and sequential models, such as Hawkes processes, have proven to be successful in capturing students’ behavioral dynamics as a representation of procrastination. However, these discovered dynamics are yet to be validated with psychological measures of procrastination through student self-reports and surveys. In this work, we fill this gap by discovering associations between temporal procrastination modeling in students with students’ chronic and academic procrastination levels and their goal achievement. Our analysis reveals meaningful relationships between the learning dynamics discovered by Hawkes processes with student procrastination and goal achievement based on student self-reported data. Most importantly, it shows that students who exhibit inconsistent and less regular learning activities, driven by the goal to outperform or perform not worse than other students, also reported a higher degree of procrastination. 
    more » « less
  3. Procrastination is a major issue faced by students which can lead to negative impacts on their academic performance and mental health. Productivity tools aim to help individuals to alleviate this behavior by providing self-regulatory support. However, the processes of how these applications help students conquer academic procrastination are under-explored. Particularly, it is essential to understand what aspects of these applications help which kinds of students in accomplishing their academic tasks. In this paper, we address this gap by presenting an academic planning and time management app (Proccoli) and a study designed to understand the association between student procrastination modeling, in-app behaviors, and perceived performance with app evaluation. As the core of our study, we analyze student perceptions of Proccoli and its impact on their study tasks and time management skills. Then, we model student procrastination behaviors by Hawkes process mining, assess student in-app behaviors by specifying planning and performance-related measures and evaluate the relationship between student behaviors and the evaluation survey results. Our study shows a need for personalized self-regulation support in Proccoli, as students with different in-app studying behaviors are found to have different perceptions of the app functionalities and the association between the prompts for social accountability students received by using Proccoli and their procrastination behavior is significant. 
    more » « less
  4. How to cluster event sequences generated via different point processes is an interesting and important problem in statistical machine learning. To solve this problem, we propose and discuss an effective model-based clustering method based on a novel Dirichlet mixture model of a special but significant type of point processes — Hawkes process. The proposed model generates the event sequences with different clusters from the Hawkes processes with different parameters, and uses a Dirichlet distribution as the prior distribution of the clusters. We prove the identifiability of our mixture model and propose an effective variational Bayesian inference algorithm to learn our model. An adaptive inner iteration allocation strategy is designed to accelerate the convergence of our algorithm. Moreover, we investigate the sample complexity and the computational complexity of our learning algorithm in depth. Experiments on both synthetic and real-world data show that the clustering method based on our model can learn structural triggering patterns hidden in asynchronous event sequences robustly and achieve superior performance on clustering purity and consistency compared to existing methods. 
    more » « less
  5. Knowledge graphs gained popularity in recent years and have been useful for concept visualization and contextual information retrieval in various applications. However, constructing a knowledge graph by scraping long and complex unstructured texts for a new domain in the absence of a well-defined ontology or an existing labeled entity-relation dataset is difficult. Domains such as cybersecurity education can harness knowledge graphs to create a student-focused interactive and learning environment to teach cybersecurity. Learning cybersecurity involves gaining the knowledge of different attack and defense techniques, system setup and solving multi-facet complex real-world challenges that demand adaptive learning strategies and cognitive engagement. However, there are no standard datasets for the cybersecurity education domain. In this research work, we present a bottom-up approach to curate entity-relation pairs and construct knowledge graphs and question-answering models for cybersecurity education. To evaluate the impact of our new learning paradigm, we conducted surveys and interviews with students after each project to find the usefulness of bot and the knowledge graphs. Our results show that students found these tools informative for learning the core concepts and they used knowledge graphs as a visual reference to cross check the progress that helped them complete the project tasks. 
    more » « less