skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stimuli-Sensitive Hawkes Processes for Personalized Student Procrastination Modeling
Student procrastination and cramming for deadlines are major challenges in online learning environments, with negative educational and well-being side effects. Modeling student activities in continuous time and predicting their next study time are important problems that can help in creating personalized timely interventions to mitigate these challenges. However, previous attempts on dynamic modeling of student procrastination suffer from major issues: they are unable to predict the next activity times, cannot deal with missing activity history, are not personalized, and disregard important course properties, such as assignment deadlines, that are essential in explaining the cramming behavior. To resolve these problems, we introduce a new personalized stimuli-sensitive Hawkes process model (SSHP), by jointly modeling all student-assignment pairs and utilizing their similarities, to predict students’ next activity times even when there are no historical observations. Unlike regular point processes that assume a constant external triggering effect from the environment, we model three dynamic types of external stimuli, according to assignment availabilities, assignment deadlines, and each student’s time management habits. Our experiments on two synthetic datasets and two real-world datasets show a superior performance of future activity prediction, comparing with state-of-the-art models. Moreover, we show that our model achieves a flexible and accurate parameterization of activity intensities in students.  more » « less
Award ID(s):
1917949
PAR ID:
10334655
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Web Conference 2021
Page Range / eLocation ID:
1562 to 1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Procrastination is a major issue faced by students which can lead to negative impacts on their academic performance and mental health. Productivity tools aim to help individuals to alleviate this behavior by providing self-regulatory support. However, the processes of how these applications help students conquer academic procrastination are under-explored. Particularly, it is essential to understand what aspects of these applications help which kinds of students in accomplishing their academic tasks. In this paper, we address this gap by presenting an academic planning and time management app (Proccoli) and a study designed to understand the association between student procrastination modeling, in-app behaviors, and perceived performance with app evaluation. As the core of our study, we analyze student perceptions of Proccoli and its impact on their study tasks and time management skills. Then, we model student procrastination behaviors by Hawkes process mining, assess student in-app behaviors by specifying planning and performance-related measures and evaluate the relationship between student behaviors and the evaluation survey results. Our study shows a need for personalized self-regulation support in Proccoli, as students with different in-app studying behaviors are found to have different perceptions of the app functionalities and the association between the prompts for social accountability students received by using Proccoli and their procrastination behavior is significant. 
    more » « less
  2. Hawkes processes have been shown to be efficient in modeling bursty sequences in a variety of applications, such as finance and social network activity analysis. Traditionally, these models parameterize each process independently and assume that the history of each point process can be fully observed. Such models could however be inefficient or even prohibited in certain real-world applications, such as in the field of education, where such assumptions are violated. Motivated by the problem of detecting and predicting student procrastination in students Massive Open Online Courses (MOOCs) with missing and partially observed data, in this work, we propose a novel personalized Hawkes process model (RCHawkes-Gamma) that discovers meaningful student behavior clusters by jointly learning all partially observed processes simultaneously, without relying on auxiliary features. Our experiments on both synthetic and real-world education datasets show that RCHawkes-Gamma can effectively recover student clusters and their temporal procrastination dynamics, resulting in better predictive performance of future student activities. Our further analyses of the learned parameters and their association with student delays show that the discovered student clusters unveil meaningful representations of various procrastination behaviors in students. 
    more » « less
  3. A substantial amount of research has been conducted by the educational data mining community to track and model learning. Previous work in modeling student knowledge has focused on predicting student performance at the problem level. While informative, problem-to-problem predictions leave little time for interventions within the system and relatively no time for human interventions. As such, modeling student performance at higher levels, such as by assignment, may provide a better opportunity to develop and apply learning interventions preemptively to remedy gaps in student knowledge. We aim to identify assignment-level features that predict whether or a not a student will finish their next homework assignment once started. We employ logistic regression models to test which features best predict whether a student will be a “starter” or a “finisher” on the next assignment. 
    more » « less
  4. Procrastination, as an act of voluntarily delaying tasks, is particularly pronounced among students. Recent research has proposed several solutions to modeling student behaviors with the goal of procrastination modeling. Particularly, temporal and sequential models, such as Hawkes processes, have proven to be successful in capturing students’ behavioral dynamics as a representation of procrastination. However, these discovered dynamics are yet to be validated with psychological measures of procrastination through student self-reports and surveys. In this work, we fill this gap by discovering associations between temporal procrastination modeling in students with students’ chronic and academic procrastination levels and their goal achievement. Our analysis reveals meaningful relationships between the learning dynamics discovered by Hawkes processes with student procrastination and goal achievement based on student self-reported data. Most importantly, it shows that students who exhibit inconsistent and less regular learning activities, driven by the goal to outperform or perform not worse than other students, also reported a higher degree of procrastination. 
    more » « less
  5. null (Ed.)
    Knowledge Tracing (KT), which aims to model student knowledge level and predict their performance, is one of the most important applications of user modeling. Modern KT approaches model and maintain an up-to-date state of student knowledge over a set of course concepts according to students’ historical performance in attempting the problems. However, KT approaches were designed to model knowledge by observing relatively small problem-solving steps in Intelligent Tutoring Systems. While these approaches were applied successfully to model student knowledge by observing student solutions for simple problems, such as multiple-choice questions, they do not perform well for modeling complex problem solving in students. Most importantly, current models assume that all problem attempts are equally valuable in quantifying current student knowledge. However, for complex problems that involve many concepts at the same time, this assumption is deficient. It results in inaccurate knowledge states and unnecessary fluctuations in estimated student knowledge, especially if students guess the correct answer to a problem that they have not mastered all of its concepts or slip in answering the problem that they have already mastered all of its concepts. In this paper, we argue that not all attempts are equivalently important in discovering students’ knowledge state, and some attempts can be summarized together to better represent student performance. We propose a novel student knowledge tracing approach, Granular RAnk based TEnsor factorization (GRATE), that dynamically selects student attempts that can be aggregated while predicting students’ performance in problems and discovering the concepts presented in them. Our experiments on three real-world datasets demonstrate the improved performance of GRATE, compared to the state-of-the-art baselines, in the task of student performance prediction. Our further analysis shows that attempt aggregation eliminates the unnecessary fluctuations from students’ discovered knowledge states and helps in discovering complex latent concepts in the problems. 
    more » « less