skip to main content

This content will become publicly available on June 17, 2023

Title: Liquid-Phase Exfoliation of Magnetically and Optoelectronically Active Ruthenium Trichloride Nanosheets
α-RuCl3 is a layered transition metal halide that possesses a range of exotic magnetic, optical, and electronic properties including fractional excitations indicative of a proximate Kitaev quantum spin liquid (QSL). While previous reports have explored these properties on idealized single crystals or mechanically exfoliated samples, the scalable production of α-RuCl3 nanosheets has not yet been demonstrated. Here, we perform liquid-phase exfoliation (LPE) of α-RuCl3 through an electrochemically assisted approach, which yields ultrathin, electron-doped α-RuCl3 nanosheets that are then assembled into electrically conductive large-area thin films. The crystalline integrity of the α-RuCl3 nanosheets following LPE is confirmed through a wide range of structural and chemical analyses. Moreover, the physical properties of the LPE α-RuCl3 nanosheets are investigated through electrical, optical, and magnetic characterization methods, which reveal a structural phase transition at 230 K that is consistent with the onset of Kitaev paramagnetism in addition to an antiferromagnetic transition at 2.6 K. Intercalated ions from the electrochemical LPE protocol favorably alter the optical response of the α-RuCl3 nanosheets, enabling large-area Mott insulator photodetectors that operate at telecommunications-relevant infrared wavelengths near 1.55 μm. These photodetectors show a linear photocurrent response as a function of incident power, which suggests negligible trap-mediated recombination or photothermal more » effects, ultimately resulting in a photoresponsivity of ≈2 mA/W. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
2004420
Publication Date:
NSF-PAR ID:
10334666
Journal Name:
ACS Nano
ISSN:
1936-0851
Sponsoring Org:
National Science Foundation
More Like this
  1. Two dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) are promising for optical modulation, detection, and light emission since their material properties can be tuned on-demand via electrostatic doping1–21. The optical properties of TMDs have been shown to change drastically with doping in the wavelength range near the excitonic resonances22–26. However, little is known about the effect of doping on the optical properties of TMDs away from these resonances, where the material is transparent and therefore could be leveraged in photonic circuits. Here, we probe the electro-optic response of monolayer TMDs at near infrared (NIR) wavelengths (i.e. deep in the transparency regime), by integrating them on silicon nitride (SiN) photonic structures to induce strong light -matter interaction with the monolayer. We dope the monolayer to carrier densities of (7.2 ± 0.8) × 1013 cm-2, by electrically gating the TMD using an ionic liquid [P14+] [FAP-]. We show strong electro-refractive response in monolayer tungsten disulphide (WS2) at NIR wavelengths by measuring a large change in the real part of refractive index ∆n = 0.53, with only a minimal change in the imaginary part ∆k = 0.004. We demonstrate photonic devices based on electrostatically gated SiN-WS2 phase modulator withmore »high efficiency ( ) of 0.8 V · cm. We show that the induced phase change relative to the change in absorption (i.e. ∆n/∆k) is approximately 125, that is significantly higher than the ones achieved in 2D materials at different spectral ranges and in bulk materials, commonly employed for silicon photonic modulators such as Si and III-V on Si, while accompanied by negligible insertion loss. Efficient phase modulators are critical for enabling large-scale photonic systems for applications such as Light Detection and Ranging (LIDAR), phased arrays, optical switching, coherent optical communication and quantum and optical neural networks27–30.« less
  2. The Kitaev honeycomb model has attracted significant attention due to its exactly solvable spin-liquid ground state with fractionalized Majorana excitations and its possible materialization in magnetic Mott insulators with strong spin-orbit couplings. Recently, the 5d-electron compound H3LiIr2O6 has shown to be a strong candidate for Kitaev physics considering the absence of any signs of a long-range ordered magnetic state. In this work, we demonstrate that a finite density of random vacancies in the Kitaev model gives rise to a striking pileup of low-energy Majorana eigenmodes and reproduces the apparent power-law upturn in the specific heat measurements of H3LiIr2O6. Physically, the vacancies can originate from various sources such as missing magnetic moments or the presence of nonmagnetic impurities (true vacancies), or from local weak couplings of magnetic moments due to strong but rare bond randomness (quasivacancies). We show numerically that the vacancy effect is readily detectable even at low vacancy concentrations and that it is not very sensitive either to the nature of vacancies or to different flux backgrounds. We also study the response of the site-diluted Kitaev spin liquid to the three-spin interaction term, which breaks time-reversal symmetry and imitates an external magnetic field. We propose a field-induced flux-sector transitionmore »where the ground state becomes flux-free for larger fields, resulting in a clear suppression of the low-temperature specific heat. Finally, we discuss the effect of dangling Majorana fermions in the case of true vacancies and show that their coupling to an applied magnetic field via the Zeeman interaction can also account for the scaling behavior in the high-field limit observed in H3LiIr2O6.« less
  3. The leading order nonlinear (NL) susceptibility, χ3, in a paramagnet is negative and diverges as T → 0. This divergence is destroyed when spins correlate and the NL response provides unique insights into magnetic order. Dimensionality, exchange interaction, and preponderance of quantum effects all imprint their signatures in the NL magnetic response. Here, we study the NL susceptibilities in the proximate Kitaev magnet α-RuCl3, which differs from the expected antiferromagnetic behavior. For T < Tc = 7.5 K and field B in the ab-plane, we obtain contrasting NL responses in low (<2 T) and high field regions. For low fields, the NL behavior is dominated by a quadratic response (positive χ2), which shows a rapid rise below Tc. This large χ2 > 0 implies a broken sublattice symmetry of magnetic order at low temperatures. Classical Monte Carlo (CMC) simulations in the standard K − H − Γ model secure such a quadratic B dependence of M, only for T ≈ Tc with χ2 being zero as T → 0. It is also zero for all temperatures in exact diagonalization calculations. On the other hand, we find an exclusive cubic term (χ3) that describes the high field NL behavior well. χ3 is large and positive both below and above Tc crossing zero only for T > 50 K. In contrast, for B ∥ c-axis,more »no separate low/high field behaviors are measured and only a much smaller χ3 is apparent.« less
  4. Abstract

    The bond-disordered Kitaev model attracts much attention due to the experimental relevance inα-RuCl3andA3LiIr2O6(A= H, D, Ag, etc.). Applying a magnetic field to break the time-reversal symmetry leads to a strong modulation in mass terms for Dirac cones. Because of the smallness of the flux gap of the Kitaev model, a small bond disorder can have large influence on itinerant Majorana fermions. The quantization of the thermal Hall conductivityκxy/Tdisappears by a quantum Hall transition induced by a small disorder, andκxy/Tshows a rapid crossover into a state with a negligible Hall current. We call this immobile liquid state Anderson–Kitaev spin liquid (AKSL). Especially, the critical disorder strengthδJc1~ 0.05 in the unit of the Kitaev interaction would have many implications for the stability of Kitaev spin liquids.

  5. Abstract

    We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$cm2V-1s-1), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of anin-planeelectric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from$$\lambda =3$$λ=3to 12$$\upmu$$μm by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$11\times 10^3$$11×103W/$$\hbox {m}^2$$m2at$$T=2000$$T=2000K for a bias voltage of$$V=23$$V=23V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and derivingmore »the completely general nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$\upmu$$μm and 150$$\upmu$$μm, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$12^\circ$$12and$$80^\circ$$80by tuning the Fermi energy between$$E_F=1.0$$EF=1.0eV and$$E_F=0.25$$EF=0.25eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.

    « less