- Award ID(s):
- 1917511
- PAR ID:
- 10417049
- Date Published:
- Journal Name:
- arXivorg
- ISSN:
- 2331-8422
- Page Range / eLocation ID:
- 2301.07401
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Utilization of the interaction between spin and heat currents is the central focus of the field of spin caloritronics. Chiral phonons possessing angular momentum arising from the broken symmetry of a non-magnetic material create the potential for generating spin currents at room temperature in response to a thermal gradient, precluding the need for a ferromagnetic contact. Here we show the observation of spin currents generated by chiral phonons in a two-dimensional layered hybrid organic–inorganic perovskite implanted with chiral cations when subjected to a thermal gradient. The generated spin current shows a strong dependence on the chirality of the film and external magnetic fields, of which the coefficient is orders of magnitude larger than that produced by the reported spin Seebeck effect. Our findings indicate the potential of chiral phonons for spin caloritronic applications and offer a new route towards spin generation in the absence of magnetic materials.more » « less
-
α-RuCl3 is considered to be the top candidate material for the experimental realization of the celebrated Kitaev model, where ground states are quantum spin liquids with interesting fractionalized excitations. It is, however, known that additional interactions beyond the Kitaev model trigger in α-RuCl3 a long-range zigzag antiferromagnetic ground state. In this work, we investigate a nanoflake of α-RuCl3 through guarded high impedance measurements aimed at reaching the regime where the system turns into a zigzag antiferromagnet. We investigated a variety of temperatures (1.45–175 K) and out-of-plane magnetic fields (up to 11 T), finding a clear signature of a structural phase transition at ≈160 K as reported for thin crystals of α-RuCl3, as well as a thermally activated behavior at temperatures above ≈30 K, with a characteristic activation energy significantly smaller than the energy gap that we observe for α-RuCl3 bulk crystals through our angle resolved photoemission spectroscopy (ARPES) experiments. Additionally, we found that below ≈30 K, transport is ruled by Efros–Shklovskii variable range hopping (VRH). Most importantly, our data show that below the magnetic ordering transition known for bulk α-RuCl3 in the frame of the Kitaev–Heisenberg model (≈7 K), there is a clear deviation from VRH or thermal activation transport mechanisms. Our work demonstrates the possibility of reaching, through specialized high impedance measurements, the thrilling ground states predicted for α-RuCl3 at low temperatures in the frame of the Kitaev–Heisenberg model and informs about the transport mechanisms in this material in a wide temperature range.more » « less
-
Recently discovered magnetic Weyl semimetals (MWSM), with enhanced Berry curvature stemming from the topology of their electronic band structure, have gained much interest for spintronics applications. In this category, Co2MnGa, a room temperature ferromagnetic Heusler alloy, has garnered special interest as a promising material for topologically driven spintronic applications. However, until now, the structural-order dependence of spin current generation efficiency through the spin Hall effect has not been fully explored in this material. In this paper, we study the evolution of magnetic and transport properties of Co2MnGa thin films from the chemically disordered B2 to ordered L21 phase. We also report on the change in spin generation efficiency across these different phases, using heterostructures of Co2MnGa and ferrimagnet CoxTb1−x with perpendicular magnetic anisotropy. We measured large spin Hall angles in both the B2 and L21 phases, and within our experimental limits, we did not observe the advantage brought by the MWSM ordering in generating a strong spin Hall angle over the disordered phases, which suggests more complicated mechanisms over the intrinsic, Weyl-band structure-determined spin Hall effect in these material stacks.more » « less
-
Abstract We study helical structures in spin-spiral single crystals. In the continuum approach for the helicity potential energy the simple electronic band splits into two non-parabolic bands. For low exchange integrals, the lower band is described by a surface with a saddle shape in the direction of the helicity axis. Using the Boltzmann equation with the relaxation due to acoustic phonons, we discover the dependence of the current on the angle between the electric field and helicity axis leading to the both parallel and perpendicular to the electric field components in the electroconductivity. The latter can be interpreted as a planar Hall effect. In addition, we find that the transition rates depend on an electron spin allowing the transition between the bands. The electric conductivities exhibit nonlinear behaviors with respect to chemical potential µ . We explain this effect as the interference of the band anisotropy, spin conservation, and interband transitions. The proposed theory with the spherical model in the effective mass approximation for conduction electrons can elucidate nonlinear dependencies that can be identified in experiments. We find the excellent agreement between the theoretical and experimental data for parallel resistivity depending on temperature at the phase transition from helical to ferromagnetic state in a M n P single crystal. In addition, we predict that the perpendicular resistivity abruptly drops to zero in the ferromagnetic phase.more » « less
-
We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon–defect coupling is proportional to the phonon lifetime and has a “side-jump” interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin–orbit interaction.