skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A niobium oxide with a shear structure and planar defects for high-power lithium ion batteries
The development of anode materials with high-rate capability is critical to high-power lithium batteries. T-Nb 2 O 5 has been widely reported to exhibit pseudocapacitive behavior and fast lithium storage capability. However, the other polymorphs of Nb 2 O 5 prepared at higher temperatures have the potential to achieve even higher specific capacity and tap density than T-Nb 2 O 5 , offering higher volumetric power and energy density. Here, micrometer-sized H-Nb 2 O 5 with rich Wadsley planar defects (denoted as d-H-Nb 2 O 5 ) is designed for fast lithium storage. The performance of H-Nb 2 O 5 with local rearrangements of [NbO 6 ] octahedra blocks surpasses that of T-Nb 2 O 5 in terms of specific capacity, rate capability, and stability. A wide range variation in the valence of niobium ions upon lithiation was observed for defective H-Nb 2 O 5 via operando X-ray absorption spectroscopy. Operando extended X-ray absorption fine structure and ex situ Raman spectroscopy analyses reveal a large and reversible distortion of the structure in the two-phase region. Computation and ex situ X-ray diffraction analysis reveal that the shear structure expands along major lithium diffusion pathways and contracts in the direction perpendicular to the shear plane. Planar defects relieve strain through perpendicular arrangements of blocks, minimizing volume change and enhancing structural stability. In addition, strong Li adsorption on planar defects enlarges intercalation capacity. Different from nanostructure engineering, our strategy to modify the planar defects in the bulk phase can effectively improve the intrinsic properties. The findings in this work offer new insights into the design of fast Li-ion storage materials in micrometer sizes through defect engineering, and the strategy is applicable to the material discovery for other energy-related applications.  more » « less
Award ID(s):
1742828
PAR ID:
10334670
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Energy & Environmental Science
Volume:
15
Issue:
1
ISSN:
1754-5692
Page Range / eLocation ID:
254 to 264
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The growing demand for bioelectronics has generated widespread interest in implantable energy storage. These implantable bioelectronic devices, powered by a complementary battery/capacitor system, have faced difficulty in miniaturization without compromising their functionality. This paper reports on the development of a promising high‐rate cathode material for implantable power sources based on Li‐exchanged Na1.5VOPO4F0.5anchored on reduced graphene oxide (LNVOPF‐rGO). LNVOPF is unique in that it offers dual charge storage mechanisms, which enable it to exhibit mixed battery/capacitor electrochemical behavior. In this work, electrochemical Li‐ion exchange of the LNVOPF structure is characterized by operando X‐ray diffraction. Through designed nanostructuring, the charge storage kinetics of LNVOPF are improved, as reflected in the stored capacity of 107 mAh g−1at 20C. A practical full cell device composed of LNVOPF and T‐Nb2O5, which serves as a pseudocapacitive anode, is fabricated to demonstrate not only high energy/power density storage (100 Wh kg−1at 4000 W kg−1) but also reliable pulse capability and biocompatibility, a desirable combination for applications in biostimulating devices. This work underscores the potential of miniaturizing biomedical devices by replacing a conventional battery/capacitor couple with a single power source. 
    more » « less
  2. The layered transition metal chalcogenides MCrX2 (M = Ag, Cu; X = S, Se, Te) are of interest for energy storage because chemically Li-substituted analogs were reported as superionic Li+ conductors. The coexistence of fast ion transport and reducible transition metal and chalcogen elements suggests that this family may offer multifunctional capability for electrochemical storage. Here, we investigate the electrochemical reduction of AgCrSe2 and CuCrSe2 in non-aqueous Li- and Na-ion electrolytes using electrochemical measurements coupled with ex situ characterization (scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy). Both compounds delivered high initial specific capacities (~ 560 mAh/g), corresponding to 6.64 and 5.73 Li+/e- per formula unit for AgCrSe2 and CuCrSe2, respectively. We attribute this difference to distinct reduction pathways: 1) Li+ intercalation to form LiCrSe2 and extruded Ag or Cu, 2) conversion of LiCrSe2 to Li2Se, and 3) formation of an Ag-Li alloy at the lowest potential, operative only in AgCrSe2. Consistent with this proposed mechanism, step 3 was absent during reduction of AgCrSe2 in a Na-ion electrolyte since Ag does not alloy with Na. These results demonstrate the complex reduction chemistry of MCrX2 in the presence of alkali ions, providing insights into the use of MCrX2 materials as alkali ion superionic conductors or high capacity electrodes for lithium or sodium-ion type batteries. 
    more » « less
  3. Substantial improvements in cycle life, rate performance, accessible voltage, and reversible capacity are required to realize the promise of Li-ion batteries in full measure. Here, we have examined insertion electrodes of the same composition (V 2 O 5 ) prepared according to the same electrode specifications and comprising particles with similar dimensions and geometries that differ only in terms of their atomic connectivity and crystal structure, specifically two-dimensional (2D) layered α-V 2 O 5 that crystallizes in an orthorhombic space group and one-dimensional (1D) tunnel-structured ζ-V 2 O 5 crystallized in a monoclinic space group. By using particles of similar dimensions, we have disentangled the role of specific structural motifs and atomistic diffusion pathways in affecting electrochemical performance by mapping the dynamical evolution of lithiation-induced structural modifications using ex situ scanning transmission X-ray microscopy, operando synchrotron X-ray diffraction measurements, and phase-field modeling. We find the operation of sharply divergent mechanisms to accommodate increasing concentrations of Li-ions: a series of distortive phase transformations that result in puckering and expansion of interlayer spacing in layered α-V 2 O 5 , as compared with cation reordering along interstitial sites in tunnel-structured ζ-V 2 O 5 . By alleviating distortive phase transformations, the ζ-V 2 O 5 cathode shows reduced voltage hysteresis, increased Li-ion diffusivity, alleviation of stress gradients, and improved capacity retention. The findings demonstrate that alternative lithiation mechanisms can be accessed in metastable compounds by dint of their reconfigured atomic connectivity and can unlock substantially improved electrochemical performance not accessible in the thermodynamically stable phase. 
    more » « less
  4. Enhancing battery energy storage capability and reducing the cost per average energy capacity is urgent to satisfy the increasing energy demand in modern society. The lithium-sulfur (Li-S) battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1), low cost, and low toxicity.1 Despite these advantages, the practical utilization of lithium-sulfur (Li-S) batteries to date has been hindered by a series of obstacles, including low active material loading, shuttle effects, and sluggish sulfur conversion kinetics.2 The traditional 2D planer thick electrode is considered as a general approach to enhance the mass loading of the Li-S battery.3 However, the longer diffusion length of lithium ions, which resulted in high tortuosity in the compact stacking thick electrode, decreases the penetration ability of the electrolyte into the entire cathode.4 Although an effort to induce catalysts in the cathode was made to promote sulfur conversion kinetic conditions, catalysts based on transition metals suffered from the low electronic conductivity, and some elements (i.e.: Co, Mn) may even absorb and restrict polysulfides for further reaction. 5 To mitigate the issues listed above, herein we propose a novel sulfur cathode design strategy enabled by additive manufacturing and oxidative chemical vapor deposition (oCVD). 6,7 Specifically, the cathode is designed to have a hierarchal hollow structure via a stereolithography technique to increase sulfur usage. Microchannels are constructed on the tailored sulfur cathode to further fortify the wettability of the electrolyte. The as-printed cathode is then sintered at 700 °C in an N2 atmosphere in order to generate a carbon skeleton (i.e.: carbonization of resin) with intrinsic carbon defects. The intrinsic carbon defects are expected to create favorable sulfur conversion conditions with sufficient electronic conductivity. In this study, the oCVD technique is leveraged to produce a conformal coating layer to eliminate shuttle effects. Identified by scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping characterizations, the oCVD PEDOT is not only covered on the surface of the cathode but also on the inner surface of the microchannels. High-resolution x-ray photoelectron spectroscopy analyses (C 1s and S 2p orbitals) between pristine and modified samples demonstrate that a high concentration of the defects has been produced on the sulfur matrix after sintering and posttreatment. In-operando XRD diffractograms show that the Li2S is generated in the oCVD PEDOT-coated sample during the charge and discharge process even with a high current density, confirming an eminent sulfur conversion kinetic condition. In addition, ICP-OES results of lithium metal anode at different states of charge (SoC) verify that the shuttle effects are excellently restricted by oCVD PEDOT. Overall, the high mass loading (> 5 mg cm-2) with an elevated sulfur utilization ratio, accelerated reaction kinetics and stabilized electrochemical process have been achieved on the sulfur cathode by implementing this innovative cathode design strategy. The results of this study demonstrate significant promises of employing pure sulfur powder with high electrochemical performance and suggest a pathway to the higher energy and power density battery. References: 1 Chen, Y. Adv Mater 33, e2003666. 2 Bhargav, A. Joule 4, 285-291. 3 Liu, S. Nano Energy 63, 103894. 4 Chu, T. Carbon Energy 3. 5 Li, Y. Matter 4, 1142-1188. 6 John P. Lock. Macromolecules 39, 4 (2006). 7 Zekoll, S. Energy & Environmental Science 11, 185-201. 
    more » « less
  5. Lithium peroxide is the crucial storage material in lithium–air batteries. Understanding the redox properties of this salt is paramount toward improving the performance of this class of batteries. Lithium peroxide, upon exposure to p –benzoquinone ( p –C 6 H 4 O 2 ) vapor, develops a deep blue color. This blue powder can be formally described as [Li 2 O 2 ] 0.3   · [LiO 2 ] 0.7   · {Li[ p –C 6 H 4 O 2 ]} 0.7 , though spectroscopic characterization indicates a more nuanced structural speciation. Infrared, Raman, electron paramagnetic resonance, diffuse-reflectance ultraviolet-visible and X-ray absorption spectroscopy reveal that the lithium salt of the benzoquinone radical anion forms on the surface of the lithium peroxide, indicating the occurrence of electron and lithium ion transfer in the solid state. As a result, obligate lithium superoxide is formed and encapsulated in a shell of Li[ p –C 6 H 4 O 2 ] with a core of Li 2 O 2 . Lithium superoxide has been proposed as a critical intermediate in the charge/discharge cycle of Li–air batteries, but has yet to be isolated, owing to instability. The results reported herein provide a snapshot of lithium peroxide/superoxide chemistry in the solid state with redox mediation. 
    more » « less