Abstract Western Atlantic bluefin tuna (ABT) undertake long-distance migrations from rich feeding grounds in the North Atlantic to spawn in oligotrophic waters of the Gulf of Mexico (GoM). Stock recruitment is strongly affected by interannual variability in the physical features associated with ABT larvae, but the nutrient sources and food-web structure of preferred habitat, the edges of anticyclonic loop eddies, are unknown. Here, we describe the goals, physical context, design and major findings of an end-to-end process study conducted during peak ABT spawning in May 2017 and 2018. Mesoscale features in the oceanic GoM were surveyed for larvae, and five multi-day Lagrangian experiments measured hydrography and nutrients; plankton biomass and composition from bacteria to zooplankton and fish larvae; phytoplankton nutrient uptake, productivity and taxon-specific growth rates; micro- and mesozooplankton grazing; particle export; and ABT larval feeding and growth rates. We provide a general introduction to the BLOOFINZ-GoM project (Bluefin tuna Larvae in Oligotrophic Ocean Foodwebs, Investigation of Nitrogen to Zooplankton) and highlight the finding, based on backtracking of experimental waters to their positions weeks earlier, that lateral transport from the continental slope region may be more of a key determinant of available habitat utilized by larvae than eddy edges per se. 
                        more » 
                        « less   
                    
                            
                            Influence of food quality on larval growth of Atlantic bluefin tuna ( Thunnus thynnus ) in the Gulf of Mexico
                        
                    
    
            Abstract Larval abundances of Atlantic bluefin tuna (ABT) in the Gulf of Mexico are currently utilized to inform future recruitment by providing a proxy for the spawning potential of western ABT stock. Inclusion of interannual variations in larval growth is a key advance needed to translate larval abundance to recruitment success. However, little is known about the drivers of growth variations during the first weeks of life. We sampled patches of western ABT larvae in 3–4 day Lagrangian experiments in May 2017 and 2018, and assessed age and growth rates from sagittal otoliths relative to size categories of zooplankton biomass and larval feeding behaviors from stomach contents. Growth rates were similar, on average, between patches (0.37 versus 0.39 mm d−1) but differed significantly through ontogeny and were correlated with a food limitation index, highlighting the importance of prey availability. Otolith increment widths were larger for postflexion stages in 2018, coincident with high feeding on preferred prey (mainly cladocerans) and presumably higher biomass of more favorable prey type. Faster growth reflected in the otolith microstructures may improve survival during the highly vulnerable larval stages of ABT, with direct implications for recruitment processes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1851558
- PAR ID:
- 10334681
- Editor(s):
- Irigoien, Xabier
- Date Published:
- Journal Name:
- Journal of Plankton Research
- ISSN:
- 0142-7873
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Bluefin tuna spawn in restricted areas of subtropical oligotrophic seas. Here, we investigate the zooplankton prey and feeding selectivity of early larval stages of Atlantic bluefin tuna (ABT, Thunnus thynnus) in larval rearing habitat of the Gulf of Mexico. Larvae and zooplankton were collected during two multi-day Lagrangian experiments during peak spawning in May 2017 and 2018. Larvae were categorized by flexion stage and standard length. We identified, enumerated and sized zooplankton from larval gut contents and in the ambient community. Ciliates were quantitatively important (up to 9%) in carbon-based diets of early larvae. As larvae grew, diet composition and prey selection shifted from small copepod nauplii and calanoid copepodites to larger podonid cladocerans, which accounted for up to 70% of ingested carbon. Even when cladoceran abundances were <0.2 m−3, they comprised 23% of postflexion stage diet. Feeding behaviors of larvae at different development stages were more specialized, and prey selection narrowed to appendicularians and primarily cladocerans when these taxa were more abundant. Our findings suggest that ABT larvae have the capacity to switch from passive selection, regulated by physical factors, to active selection of presumably energetically optimal prey.more » « less
- 
            null (Ed.)Abstract We investigated size-fractioned biomass, isotopes and grazing of mesozooplankton communities in the larval habitat of Atlantic bluefin tuna (ABT) in the oceanic Gulf of Mexico (GoM) during the peak spawning month of May. Euphotic-zone biomass ranged from 101 to 513 mg C m−2 during the day and 216 to 798 mg C m−2 at night. Grazing varied from 0.1 to 1.0 mg Chla m−2 d−1, averaging 1–3% of phytoplankton Chla consumed d−1. Carnivorous taxa dominated the biomass of > 1-mm zooplankton (78% day; 60% night), while only 13% of smaller zooplankton were carnivores. δ15N enrichment between small and large sizes indicates a 0.5–0.6 trophic-step difference. Although characteristics of GoM zooplankton are generally similar to those of remote oligotrophic subtropical regions, zooplankton stocks in the ABT larval habitat are disproportionately high relative to primary production, compared with HOT and BATS averages. Growth-grazing balances for phytoplankton were resolved with a statistically insignificant residual, and trophic fluxes from local productivity were sufficient to satisfy C demand of suspension feeding mesozooplankton. While carnivore C demand was met by local processes in the central GoM, experiments closer to the coastal margin suggest the need for a lateral subsidy of zooplankton biomass to the oceanic region.more » « less
- 
            none (Ed.)Two cohorts of Atlantic bluefin tuna (Thunnus thynnus) larvae were sampled in 2017 and 2018 during the peak of spawning in the Gulf of Mexico (GOM). We examined environmental variables, daily growth, otolith biometry and stable isotopes and found that the GOM18 cohort grew at faster rates, with larger and wider otoliths. Inter and intra-population analyses (deficient vs. optimal growth groups) were carried out for pre- and post-flexion developmental stages to determine maternal and trophodynamic influences on larval growth variability based on larval isotopic signatures, trophic niche sizes and their overlaps. For the pre-flexion stages in both years, the optimal growth groups had significantly lower δ15N, implying a direct relationship between growth potential and maternal inheritance. Optimal growth groups and stages for both years showed lower C:N ratios, reflecting a greater energy investment in growth. The results of this study illustrate the interannual transgenerational trophic plasticity of a spawning stock and its linkages to growth potential of their offsprings in the GOM.more » « less
- 
            Abstract While adult stomatopod crustaceans are relatively well studied, understanding of larval stomatopod ecology is lacking, largely due to difficulties studying larvae in their natural habitat. This study investigated how light environment (i.e., spectral composition) and time of day affected prey consumption in two species of larval stomatopod, Gonodactylaceus falcatus (Forskål, 1775) and Gonodactylellus sp. Individual larvae were placed with 20 Artemia nauplii prey in feeding chambers treated to produce different light environments with respect to ultraviolet (UV) light: full spectrum light UV+, full spectrum UV–, and a dark control. Chambers were lowered to a depth of 3 m for 2 hours at three times of day (noon, twilight, and night) to test 1) if larval feeding rates changed at different times of day and 2) if UV vision was involved in prey capture. We found that light was important for successful feeding, with both species eating significantly more in lighted treatments than the dark controls during daytime experiments. Gonodactylellus sp. also had a significantly higher feeding rate at twilight in the UV+ treatment than in the dark control. Both species showed decreased consumption at night compared to daytime rates, and decreased consumption in all dark controls. This study is one of the first to examine how ecological conditions affect feeding behavior in larval stomatopods. Our results suggest that light is important for larval stomatopod feeding, with differences between species in daily feeding activity periods. There was also a difference in total consumption between the two species, with the slightly larger Gonodactylaceus falcatus consuming nearly double the prey items as Gonodactylellus sp. at peak feeding times. Follow up studies should incorporate a variety of prey types to test how feeding changes based on food source and density.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    