skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Title: Land use-land cover gradient demonstrates the importance of perennial grasslands with intact soils for building soil carbon in the fertile Mollisols of the North Central US
Award ID(s):
1855996
NSF-PAR ID:
10334773
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Geoderma
Volume:
418
Issue:
C
ISSN:
0016-7061
Page Range / eLocation ID:
115854
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Land-use and land-cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global and regional LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ. 
    more » « less
  2. Land use and land cover (LULC) can significantly alter river water, which can in turn have important impacts on downstream coastal ecosystems by delivering nutrients that promote marine eutrophication and hypoxia. Well-documented in temperate systems, less is known about the way land cover relates to water quality in low-lying coastal zones in the tropics. Here we evaluate the catchment LULC and the physical and chemical characteristics of six rivers that contribute flow into a seasonally hypoxic tropical bay in Bocas del Toro, Panama. From July 2019 to March 2020, we routinely surveyed eight physical and chemical characteristics (temperature, specific conductivity, salinity, pH, dissolved oxygen (DO), nitrate and nitrite, ammonium, and phosphate). Our goals were to determine how these physical and chemical characteristics of the rivers reflect the LULC, to compare the water quality of the focal rivers to rivers across Panama, and to discuss the potential impacts of river discharge in the Bay. Overall, we found that the six focal rivers have significantly different river water characteristics that can be linked to catchment LULC and that water quality of rivers 10 s of kilometers apart could differ drastically. Two focal catchments dominated by pristine peat swamp vegetation in San San Pond Sak, showed characteristics typical of blackwater rivers, with low pH, dissolved oxygen, and nutrients. The remaining four catchments were largely mountainous with >50% forest cover. In these rivers, variation in nutrient concentrations were associated with percent urbanization. Comparisons across Panamanian rivers covered in a national survey to our focal rivers shows that saltwater intrusions and low DO of coastal swamp rivers may result in their classification by a standardized water quality index as having slightly contaminated water quality, despite this being their natural state. Examination of deforestation over the last 20 years, show that changes were <10% in the focal catchments, were larger in the small mountainous catchments and suggest that in the past 20 years the physical and chemical characteristics of river water that contributes to Almirante Bay may have shifted slightly in response to these moderate land use changes. (See supplementary information for Spanish-language abstract). 
    more » « less
  3. Abstract

    Prior research indicates that land use and land cover change (LULCC) in the central United States has led to significant changes in surface climate. The spatial resolution of simulations is particularly relevant in this region due to its influence on model skill in capturing mesoscale convective systems (MCSs) and on representing the spatial heterogeneity. Recent advances in Earth system models (ESMs) make it feasible to use variable resolution (VR) meshes to study regional impacts of LULCC while avoiding inconsistencies introduced by lateral boundary conditions typically seen in limited area models. Here, we present numerical experiments using the Community Earth System Model version 2–VR to evaluate (1) the influence of resolution and land use on model skill and (2) impacts of LULCC over the central United States at different resolutions. These simulations are configured either on the 1° grid or a VR grid with grid refinement to 1/8° over the contiguous United States for the period of 1984–2010 with two alternative land use data sets corresponding to the preindustrial and present day states. Our results show that skill in simulating precipitation over the central United States is primarily dependent on resolution, whereas skill in simulating 2‐m temperature is more dependent on accurate land use. The VR experiments show stronger LULCC‐induced precipitation increases over the Midwest in May and June, corresponding to an increase in the number of MCS‐like features and a more conductive thermodynamic environment for convection. Our study demonstrates the potential of using VR ESMs for hydroclimatic simulations in regions with significant LULCC.

     
    more » « less
  4. Land is a natural resource that humans have utilized for life and various activities. Land use/land cover change (LULCC) has been of great concern to many countries over the years. Some of the main reasons behind LULCC are rapid population growth, migration, and the conversion of rural to urban areas. LULC has a considerable impact on the land-atmosphere/climate interactions. Over the past two decades, numerous studies conducted in LULC have investigated various areas of the field of LULC. However, the assemblage of information is missing for some aspects. Therefore, to provide coherent guidance, a literature review to scrutinize and evaluate many studies in particular topical areas is employed. This research study collected approximately four hundred research articles and investigated five (5) areas of interest, including (1) LULC definitions; (2) classification systems used to classify LULC globally; (3) direct and indirect changes of meta-studies associated with LULC; (4) challenges associated with LULC; and (5) LULC knowledge gaps. The synthesis revealed that LULC definitions carried vital terms, and classification systems for LULC are at the national, regional, and global scales. Most meta-studies for LULC were in the categories of direct and indirect land changes. Additionally, the analysis showed significant areas of LULC challenges were data consistency and quality. The knowledge gaps highlighted a fall in the categories of ecosystem services, forestry, and data/image modeling in LULC. Core findings exhibit common patterns, discrepancies, and relationships from the multiple studies. While literature review as a tool showed similarities among various research studies, our results recommend researchers endeavor to perform further synthesis in the field of LULC to promote our overall understanding, since research investigations will continue in LULC. 
    more » « less
  5. Abstract. The land of the conterminous United States (CONUS) hasbeen transformed dramatically by humans over the last four centuries throughland clearing, agricultural expansion and intensification, and urban sprawl.High-resolution geospatial data on long-term historical changes in land useand land cover (LULC) across the CONUS are essential for predictiveunderstanding of natural–human interactions and land-based climatesolutions for the United States. A few efforts have reconstructed historicalchanges in cropland and urban extent in the United States since themid-19th century. However, the long-term trajectories of multiple LULCtypes with high spatial and temporal resolutions since the colonial era(early 17th century) in the United States are not available yet. Byintegrating multi-source data, such as high-resolution remote sensingimage-based LULC data, model-based LULC products, and historical censusdata, we reconstructed the history of land use and land cover for theconterminous United States (HISLAND-US) at an annual timescale and 1 km × 1 km spatial resolution in the past 390 years (1630–2020). The results showwidespread expansion of cropland and urban land associated with rapid lossof natural vegetation. Croplands are mainly converted from forest, shrub,and grassland, especially in the Great Plains and North Central regions.Forest planting and regeneration accelerated the forest recovery in theNortheast and Southeast since the 1920s. The geospatial and long-termhistorical LULC data from this study provide critical information forassessing the LULC impacts on regional climate, hydrology, andbiogeochemical cycles as well as achieving sustainable use of land in thenation. The datasets are available at https://doi.org/10.5281/zenodo.7055086 (Li et al., 2022). 
    more » « less