skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1855996

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Romanowicz, Barbara (Ed.)
    Abstract Restoring wetlands will reduce nitrogen contamination from excess fertilization but estimates of the efficacy of the strategy vary widely. The intervention is often described as effective for reducing nitrogen export from watersheds to mediate bottom-level hypoxia threatening marine ecosystems. Other research points to the necessity of applying a suite of interventions, including wetland restoration to mitigate meaningful quantities of nitrogen export. Here, we use process-based physical modeling to evaluate the effects of two hypothetical, but plausible large-scale wetland restoration programs intended to reduce nutrient export to the Gulf of Mexico. We show that full adoption of the two programs currently in place can meet as little as 10% to as much as 60% of nutrient reduction targets to reduce the Gulf of Mexico dead zone. These reductions are lower than prior estimates for three reasons. First, net storage of leachate in the subsurface precludes interception and thereby dampens the percent decline in nitrogen export caused by the policy. Unlike previous studies, we first constrained riverine fluxes to match observed fluxes throughout the basin. Second, the locations of many restorable lands are geographically disconnected from heavily fertilized croplands, limiting interception of runoff. Third, daily resolution of the model simulations captured the seasonal and stormflow dynamics that inhibit wetland nutrient removal because peak wetland effectiveness does not coincide with the timing of nutrient inputs. To improve the health of the Gulf of Mexico efforts to eliminate excess nutrient, loading should be implemented beyond the field-margin wetland strategies investigated here. 
    more » « less
  2. Abstract Reducing nutrient loss from agriculture to improve water quality requires a combination of management practices. However, it has been unclear what pattern of mitigation is likely to emerge from different policies, individually and combined, and the consequences for local and national land use and farm returns. We address this research gap by constructing an integrated multi-scale framework for evaluating alternative nitrogen loss management policies for corn production in the US. This approach combines site- and practice-specific agro-ecosystem processes with a grid-resolving economic model to identify locations that can be prioritized to increase the economic efficiency of the policies. We find that regional measures, albeit effective in reducing local nitrogen loss, can displace corn production to the area where nitrogen fertilizer productivity is low and nutrient loss rate is high, thereby offsetting the overall effectiveness of the nutrient management strategy. This spatial spillover effect can be suppressed by implementing the partial measures in tandem with nationwide policies. Wetland restoration combined with split fertilizer application, along with a nitrogen loss tax could reduce nitrate nitrogen loss to the Mississippi River by 30% while only increasing corn prices by less than 2%. 
    more » « less
  3. Abstract The Wisconsin Central Sands is home to large scale vegetable production on sandy soils and managed with frequent irrigation, fertigation, and widespread nitrogen fertilizer application, all of which make the region highly susceptible to nitrate loss to groundwater. While the groundwater is used as the primary source of drinking water for many communities and rural residences across the region, it is also used for irrigation. Considering the high levels of nitrate found in the groundwater, it has been proposed that growers more accurately account for the nitrate in their irrigation water as part of nitrogen management plans. Our objectives were to 1) determine the magnitude of nitrate in irrigation water, 2) quantify the spatiotemporal variability of nitrate, and 3) determine key predictors of nitrate concentration in the region. We sampled irrigation water from 38 fields across six farms from 2018 to 2020. Across the 3 years of our study, nitrate concentration varied more across space than time. On average, our samples were tested at 19.0 mg L−1nitrate‐nitrogen, or nearly two times the U.S. Environmental Protection Agency (EPA) threshold for safe drinking water, equivalent to 48.1 kg ha−1of applied nitrate‐nitrogen with 25.4 cm (or 10 in.) of irrigation. To better understand the spatiotemporal variability in nitrate levels, week of sampling, year, well depth, well casing, and nitrogen application rate were analyzed for their role as predictor variables. Based on our linear mixed effects model, nitrogen application rate was the greatest predictor of the nitrate concentration of irrigation water (p < 0.05). 
    more » « less
  4. Abstract The Raccoon River Basin is the primary source for drinking water in Iowa's largest city and plays a major role in the Mississippi River Basin's high nutrient exports. Future climate change may have major impacts on the biological, physiological, and agronomic processes imposing a threat to ecosystem services. Efforts to reduce nitrogen (N) loads within this basin have included local litigation and the implementation of the Iowa Nutrient Reduction Strategy, which suggest incorporating bioenergy crops (i.e., miscanthus) within the current corn–soybean landscape to reach a 41% reduction in nitrate loads. This study focuses on simulating N export for historical and future land use scenarios by using an agroecosystem model (Agro‐IBIS) and a hydrology model (THMB) at the 500‐m resolution, similar to the scale of agricultural fields. Model simulations are driven by CMIP5 climate data for historical, mid‐century, and late‐century under the RCP 4.5 and 8.5 warming projections. Using recent crop profit analyses for the state of Iowa, profitability maps were generated and nitrogen leaching thresholds were used to determine where miscanthus should replace corn–soybean area to maximize reductions in N pollution. Our results show that miscanthus inclusion on low profit and high N leaching areas can result in a 4% reduction of N loss under current climate conditions and may reduce N loss by 21%–26% under future climate conditions, implying that water quality has the potential continue to improve under future climate conditions when strategically implemented conservation practices are included in future farm management plans. 
    more » « less
  5. Abstract The manureshed concept aims to rebalance surplus manure nutrients produced at animal feeding operations (sources) and the demands from nutrient‐deficient croplands (sinks) to reduce negative environmental impacts and utilize nutrients more efficiently. Due to water quality implications, studies focused on this rebalancing have typically created domain boundaries that match a particular watershed. However, a majority of agricultural datasets that are used to inform these analyses—specifically, livestock populations—are only available at the county scale, which generally does not match watershed boundaries. The common method used to address this mismatch is to weight the county statistics based on the proportion of watershed area within the county. However, these straightforward assumptions imply that animal density is uniform across a county, which can be highly problematic, especially in an era of increasing concentration of livestock production on a smaller land area. We present a case study of the Lake Mendota watershed in south‐central Wisconsin using both a typical county‐based downscaled dataset as well as a more spatially explicit dataset of livestock counts from the Census of Agriculture that aggregates a set of zip codes that best matches the watershed boundary. This comparison reveals a substantial difference in estimated livestock numbers and their associated manure production that is due to a concentration of dairy operations within the watershed compared with the rest of the county. We argue that sub‐county scale data need to become more available and integrated into nutrient and water quality management efforts so that manuresheds can be more effectively delineated and implemented. 
    more » « less
  6. Free, publicly-accessible full text available August 1, 2026
  7. Free, publicly-accessible full text available May 1, 2026
  8. We utilize a coupled economy–agroecology–hydrology modeling framework to capture the cascading impacts of climate change mitigation policy on agriculture and the resulting water quality cobenefits. We analyze a policy that assigns a range of United States government’s social cost of carbon estimates ($51, $76, and $152/ton of CO2-equivalents) to fossil fuel–based CO2emissions. This policy raises energy costs and, importantly for agriculture, boosts the price of nitrogen fertilizer production. At the highest carbon price, US carbon emissions are reduced by about 50%, and nitrogen fertilizer prices rise by about 90%, leading to an approximate 15% reduction in fertilizer applications for corn production across the Mississippi River Basin. Corn and soybean production declines by about 7%, increasing crop prices by 6%, while nitrate leaching declines by about 10%. Simulated nitrate export to the Gulf of Mexico decreases by 8%, ultimately shrinking the average midsummer area of the Gulf of Mexico hypoxic area by 3% and hypoxic volume by 4%. We also consider the additional benefits of restored wetlands to mitigate nitrogen loading to reduce hypoxia in the Gulf of Mexico and find a targeted wetland restoration scenario approximately doubles the effect of a low to moderate social cost of carbon. Wetland restoration alone exhibited spillover effects that increased nitrate leaching in other parts of the basin which were mitigated with the inclusion of the carbon policy. We conclude that a national climate policy aimed at reducing greenhouse gas emissions in the United States would have important water quality cobenefits. 
    more » « less