skip to main content

Title: The Clustering of Orbital Poles Induced by the LMC: Hints for the Origin of Planes of Satellites
Abstract A significant fraction of Milky Way (MW) satellites exhibit phase-space properties consistent with a coherent orbital plane. Using tailored N -body simulations of a spherical MW halo that recently captured a massive (1.8 × 10 11 M ⊙ ) LMC-like satellite, we identify the physical mechanisms that may enhance the clustering of orbital poles of objects orbiting the MW. The LMC deviates the orbital poles of MW dark matter particles from the present-day random distribution. Instead, the orbital poles of particles beyond R ≈ 50 kpc cluster near the present-day orbital pole of the LMC along a sinusoidal pattern across the sky. The density of orbital poles is enhanced near the LMC by a factor δ ρ max = 30% (50%) with respect to underdense regions and δ ρ iso = 15% (30%) relative to the isolated MW simulation (no LMC) between 50 and 150 kpc (150–300 kpc). The clustering appears after the LMC’s pericenter (≈50 Myr ago, 49 kpc) and lasts for at least 1 Gyr. Clustering occurs because of three effects: (1) the LMC shifts the velocity and position of the central density of the MW’s halo and disk; (2) the dark matter dynamical friction wake and more » collective response induced by the LMC change the kinematics of particles; (3) observations of particles selected within spatial planes suffer from a bias, such that measuring orbital poles in a great circle in the sky enhances the probability of their orbital poles being clustered. This scenario should be ubiquitous in hosts that recently captured a massive satellite (at least ≈1:10 mass ratio), causing the clustering of orbital poles of halo tracers. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this

    We present a 6D map of the Orphan–Chenab (OC) stream by combining the data from Southern Stellar Stream Spectroscopic Survey (S5) and Gaia. We reconstruct the proper motion, radial velocity, distance, on-sky track, and stellar density along the stream with spline models. The stream has a total luminosity of MV = −8.2 and metallicity of [Fe/H] = −1.9, similar to classical Milky Way (MW) satellites like Draco. The stream shows drastic changes in its physical width varying from 200 pc to 1 kpc, but a constant line-of-sight velocity dispersion of 5 $\mathrm{km\, s^{-1}}$. Despite the large apparent variation in the stellar number density along the stream, the flow rate of stars along the stream is remarkably constant. We model the 6D stream track by a Lagrange-point stripping method with a flexible MW potential in the presence of a moving extended Large Magellanic Cloud (LMC). This allows us to constrain the mass profile of the MW within the distance range 15.6 < r < 55.5 kpc, with the best measured enclosed mass of $(2.85\pm 0.1)\times 10^{11}\, \mathrm{\, M_\odot }$ within 32.4 kpc. Our stream measurements are highly sensitive to the LMC mass profile with the most precise measurement of its enclosed mass made at 32.8 kpc, $(7.02\pm 0.9)\times 10^{10}\, {\rm M}_\odot$.more »We also detect that the LMC dark matter halo extends to at least 53 kpc. The fitting of the OC stream allows us to constrain the past LMC trajectory and the degree of dynamical friction it experienced. We demonstrate that the stars in the OC stream show large energy and angular momentum spreads caused by LMC perturbation.

    « less

    We perform high-resolution simulations of an MW-like galaxy in a self-interacting cold dark matter model with elastic cross-section over mass of $1~\rm cm^2\, g^{-1}$ (SIDM) and compare to a model without self-interactions (CDM). We run our simulations with and without a time-dependent embedded potential to capture effects of the baryonic disc and bulge contributions. The CDM and SIDM simulations with the embedded baryonic potential exhibit remarkably similar host halo profiles, subhalo abundances, and radial distributions within the virial radius. The SIDM host halo is denser in the centre than the CDM host and has no discernible core, in sharp contrast to the case without the baryonic potential (core size ${\sim}7 \, \rm kpc$). The most massive subhaloes (with $V_{\mathrm{peak}}\gt 20 \, \rm km\, s^{-1}$) in our SIDM simulations, expected to host the classical satellite galaxies, have density profiles that are less dense than their CDM analogues at radii less than 500 pc but the deviation diminishes for less massive subhaloes. With the baryonic potential included in the CDM and SIDM simulations, the most massive subhaloes do not display the too-big-to-fail problem. However, the least dense among the massive subhaloes in both these simulations tend to have the smallest pericenter values,more »a trend that is not apparent among the bright MW satellite galaxies.

    « less

    A variety of observational campaigns seek to test dark matter models by measuring dark matter subhaloes at low masses. Despite their predicted lack of stars, these subhaloes may be detectable through gravitational lensing or via their gravitational perturbations on stellar streams. To set measurable expectations for subhalo populations within Lambda cold dark matter, we examine 11 Milky Way (MW)-mass haloes from the FIRE-2 baryonic simulations, quantifying the counts and orbital fluxes for subhaloes with properties relevant to stellar stream interactions: masses down to $10^{6}\, \text{M}_\odot$, distances ≲50 kpc of the galactic centre, across z = 0 − 1 (tlookback = 0–8 Gyr). We provide fits to our results and their dependence on subhalo mass, distance, and lookback time, for use in (semi)analytical models. A typical MW-mass halo contains ≈16 subhaloes $\gt 10^{7}\, \text{M}_\odot$ (≈1 subhalo $\gt 10^{8}\, \text{M}_\odot$) within 50 kpc at z ≈ 0. We compare our results with dark matter-only versions of the same simulations: because they lack a central galaxy potential, they overpredict subhalo counts by 2–10×, more so at smaller distances. Subhalo counts around a given MW-mass galaxy declined over time, being ≈10× higher at z = 1 than at z ≈ 0. Subhaloes have nearly isotropic orbital velocity distributions at z ≈more »0. Across our simulations, we also identified 4 analogues of Large Magellanic Cloud satellite passages; these analogues enhance subhalo counts by 1.4–2.1 times, significantly increasing the expected subhalo population around the MW today. Our results imply an interaction rate of ∼5 per Gyr for a stream like GD-1, sufficient to make subhalo–stream interactions a promising method of measuring dark subhaloes.

    « less

    In order to backward integrate the orbits of Milky Way (MW) dwarf galaxies, much effort has been invested in recent years to constrain their initial phase-space coordinates. Yet equally important are the assumptions on the potential that the dwarf galaxies experience over time, especially given the fact that the MW is currently accreting the Large Magellanic Cloud (LMC). In this work, using a dark-matter-only zoom-in simulation, we test whether the use of common parametric forms of the potential is adequate to successfully backward integrate the orbits of the subhaloes from their present-day positions. We parametrize the recovered orbits and compare them with those from the simulations. We find that simple symmetric parametric forms of the potential fail to capture the complexities and the inhomogeneities of the true potential experienced by the subhaloes. More specifically, modelling a recent massive accretion like that of the LMC as a sum of two spherical parametric potentials leads to substantial errors in the recovered parameters of the orbits. These errors rival those caused due to (a) a 30 per cent uncertainty in the virial mass of the MW and (b) not modelling the potential of the recently accreted massive satellite. Our work suggests that (i) themore »uncertainties in the parameters of the recovered orbits of some MW dwarfs may be underestimated and that (ii) researchers should characterize the uncertainties inherent to their choice of integration techniques and assumptions of the potential against cosmological zoom-in simulations of the MW, which include a recently accreted LMC.

    « less
  5. Abstract The Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) are the closest massive satellite galaxies of the Milky Way. They are probably on their first passage on an infalling orbit towards our Galaxy 1 and trace the continuing dynamics of the Local Group 2 . Recent measurements of a high mass for the LMC ( M halo  ≈ 10 11.1–11.4   M ⊙ ) 3–6 imply that the LMC should host a Magellanic Corona: a collisionally ionized, warm-hot gaseous halo at the virial temperature (10 5.3–5.5  K) initially extending out to the virial radius (100–130 kiloparsecs (kpc)). Such a corona would have shaped the formation of the Magellanic Stream 7 , a tidal gas structure extending over 200° across the sky 2,8,9 that is bringing in metal-poor gas to the Milky Way 10 . Here we show evidence for this Magellanic Corona with a potential direct detection in highly ionized oxygen (O +5 ) and indirectly by means of triply ionized carbon and silicon, seen in ultraviolet (UV) absorption towards background quasars. We find that the Magellanic Corona is part of a pervasive multiphase Magellanic circumgalactic medium (CGM) seen in many ionization states with a declining projected radial profilemore »out to at least 35 kpc from the LMC and a total ionized CGM mass of log 10 ( M H II,CGM / M ⊙ ) ≈ 9.1 ± 0.2. The evidence for the Magellanic Corona is a crucial step forward in characterizing the Magellanic group and its nested evolution with the Local Group.« less