skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, March 22 until 6:00 AM ET on Saturday, March 23 due to maintenance. We apologize for the inconvenience.


Title: Interactive rank testing by betting
In order to test if a treatment is perceptibly different from a placebo in a randomized experiment with covariates, classical nonparametric tests based on ranks of observations/residuals have been employed (eg: by Rosenbaum), with finite-sample valid inference enabled via permutations. This paper proposes a different principle on which to base inference: if — with access to all covariates and outcomes, but without access to any treatment assignments — one can form a ranking of the subjects that is sufficiently nonrandom (eg: mostly treated followed by mostly control), then we can confidently conclude that there must be a treatment effect. Based on a more nuanced, quantifiable, version of this principle, we design an interactive test called i-bet: the analyst forms a single permutation of the subjects one element at a time, and at each step the analyst bets toy money on whether that subject was actually treated or not, and learns the truth immediately after. The wealth process forms a real-valued measure of evidence against the global causal null, and we may reject the null at level if the wealth ever crosses 1= . Apart from providing a fresh “game-theoretic” principle on which to base the causal conclusion, the i-bet has other statistical and computational benefits, for example (A) allowing a human to adaptively design the test statistic based on increasing amounts of data being revealed (along with any working causal models and prior knowledge), and (B) not requiring permutation resampling, instead noting that under the null, the wealth forms a nonnegative martingale, and the type-1 error control of the aforementioned decision rule follows from a tight inequality by Ville. Further, if the null is not rejected, new subjects can later be added and the test can be simply continued, without any corrections (unlike with permutation p-values). Numerical experiments demonstrate good power under various heterogeneous treatment effects. We first describe i-bet test for two-sample comparisons with unpaired data, and then adapt it to paired data, multi-sample comparison, and sequential settings; these may be viewed as interactive martingale variants of the Wilcoxon, Kruskal-Wallis, and Friedman tests.  more » « less
Award ID(s):
1945266
NSF-PAR ID:
10334958
Author(s) / Creator(s):
; ;
Editor(s):
Scholkopf, Bernhard; Uhler, Caroline; Zhang, Kun
Date Published:
Journal Name:
First Conference on Causal Learning and Reasoning, PMLR
Volume:
140
Page Range / eLocation ID:
1-35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Windecker, Saras (Ed.)
    1. The ecological and environmental science communities have embraced machine learning (ML) for empirical modelling and prediction. However, going beyond prediction to draw insights into underlying functional relationships between response variables and environmental ‘drivers’ is less straightforward. Deriving ecological insights from fitted ML models requires techniques to extract the ‘learning’ hidden in the ML models. 2. We revisit the theoretical background and effectiveness of four approaches for deriving insights from ML: ranking independent variable importance (Gini importance, GI; permutation importance, PI; split importance, SI; and conditional permutation importance, CPI), and two approaches for inference of bivariate functional relationships (partial dependence plots, PDP; and accumulated local effect plots, ALE). We also explore the use of a surrogate model for visualization and interpretation of complex multi-variate relationships between response variables and environmental drivers. We examine the challenges and opportunities for extracting ecological insights with these interpretation approaches. Specifically, we aim to improve interpretation of ML models by investigating how effectiveness relates to (a) interpretation algorithm, (b) sample size and (c) the presence of spurious explanatory variables. 3. We base the analysis on simulations with known underlying functional relationships between response and predictor variables, with added white noise and the presence of correlated but non-influential variables. The results indicate that deriving ecological insight is strongly affected by interpretation algorithm and spurious variables, and moderately impacted by sample size. Removing spurious variables improves interpretation of ML models. Meanwhile, increasing sample size has limited value in the presence of spurious variables, but increasing sample size does improves performance once spurious variables are omitted. Among the four ranking methods, SI is slightly more effective than the other methods in the presence of spurious variables, while GI and SI yield higher accuracy when spurious variables are removed. PDP is more effective in retrieving underlying functional relationships than ALE, but its reliability declines sharply in the presence of spurious variables. Visualization and interpretation of the interactive effects of predictors and the response variable can be enhanced using surrogate models, including three-dimensional visualizations and use of loess planes to represent independent variable effects and interactions. 4. Machine learning analysts should be aware that including correlated independent variables in ML models with no clear causal relationship to response variables can interfere with ecological inference. When ecological inference is important, ML models should be constructed with independent variables that have clear causal effects on response variables. While interpreting ML models for ecological inference remains challenging, we show that careful choice of interpretation methods, exclusion of spurious variables and adequate sample size can provide more and better opportunities to ‘learn from machine learning’. 
    more » « less
  2. Abstract

    Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate ap‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on then‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference.

     
    more » « less
  3. Tests of conditional independence (CI) of ran- dom variables play an important role in ma- chine learning and causal inference. Of partic- ular interest are kernel-based CI tests which allow us to test for independence among ran- dom variables with complex distribution func- tions. The efficacy of a CI test is measured in terms of its power and its calibratedness. We show that the Kernel CI Permutation Test (KCIPT) suffers from a loss of calibratedness as its power is increased by increasing the number of bootstraps. To address this limita- tion, we propose a novel CI test, called Self- Discrepancy Conditional Independence Test (SDCIT). SDCIT uses a test statistic that is a modified unbiased estimate of maximum mean discrepancy (MMD), the largest difference in the means of features of the given sample and its permuted counterpart in the kernel-induced Hilbert space. We present results of experi- ments that demonstrate SDCIT is, relative to the other methods: (i) competitive in terms of its power and calibratedness, outperforming other methods when the number of condition- ing variables is large; (ii) more robust with re- spect to the choice of the kernel function; and (iii) competitive in run time. 
    more » « less
  4. Abstract

    Randomized controlled trials (RCTs) admit unconfounded design-based inference – randomization largely justifies the assumptions underlying statistical effect estimates – but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT nonparticipants. For example, data from A/B tests conducted within an educational technology platform exist alongside historical observational data drawn from student logs. We outline a design-based approach to using such observational data for variance reduction in RCTs. First, we use the observational data to train a machine learning algorithm predicting potential outcomes using covariates and then use that algorithm to generate predictions for RCT participants. Then, we use those predictions, perhaps alongside other covariates, to adjust causal effect estimates with a flexible, design-based covariate-adjustment routine. In this way, there is no danger of biases from the observational data leaking into the experimental estimates, which are guaranteed to be exactly unbiased regardless of whether the machine learning models are “correct” in any sense or whether the observational samples closely resemble RCT samples. We demonstrate the method in analyzing 33 randomized A/B tests and show that it decreases standard errors relative to other estimators, sometimes substantially.

     
    more » « less
  5. Randomized A/B tests within online learning platforms represent an exciting direction in learning sciences. With minimal assumptions, they allow causal effect estimation without confounding bias and exact statistical inference even in small samples. However, often experimental samples and/or treatment effects are small, A/B tests are underpowered, and effect estimates are overly imprecise. Recent methodological advances have shown that power and statistical precision can be substantially boosted by coupling design-based causal estimation to machine-learning models of rich log data from historical users who were not in the experiment. Estimates using these techniques remain unbiased and inference remains exact without any additional assumptions. This paper reviews those methods and applies them to a new dataset including over 250 randomized A/B comparisons conducted within ASSISTments, an online learning platform. We compare results across experiments using four novel deep-learning models of auxiliary data and show that incorporating auxiliary data into causal estimates is roughly equivalent to increasing the sample size by 20% on average, or as much as 50-80% in some cases, relative to t-tests, and by about 10% on average, or as much as 30-50%, compared to cutting-edge machine learning unbiased estimates that use only data from the experiments. We show that the gains can be even larger for estimating subgroup effects, hold even when the remnant is unrepresentative of the A/B test sample, and extend to post-stratification population effects estimators. 
    more » « less