Because the average treatment effect (ATE) measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population. Assessing such risk is difficult, however, because any one individual treatment effect (ITE) is never observed, so the 10% worst-affected cannot be identified, whereas distributional treatment effects only compare the first deciles within each treatment group, which does not correspond to any 10% subpopulation. In this paper, we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution. We leverage the availability of pretreatment covariates and characterize the tightest possible upper and lower bounds on ITE-CVaR given by the covariate-conditional average treatment effect (CATE) function. We then proceed to study how to estimate these bounds efficiently from data and construct confidence intervals. This is challenging even in randomized experiments as it requires understanding the distribution of the unknown CATE function, which can be very complex if we use rich covariates to best control for heterogeneity. We develop a debiasing method that overcomes this and prove it enjoys favorable statistical properties even when CATE and other nuisances are estimated by black box machine learning or even inconsistently. Studying a hypothetical change to French job search counseling services, our bounds and inference demonstrate a small social benefit entails a negative impact on a substantial subpopulation. This paper was accepted by J. George Shanthikumar, data science. Funding: This work was supported by the Division of Information and Intelligent Systems [Grant 1939704]. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4819 .
more »
« less
Robust and Agnostic Learning of Conditional Distributional Treatment Effects
The conditional average treatment effect (CATE) is the best measure of individual causal effects given baseline covariates. However, the CATE only captures the (conditional) average, and can overlook risks and tail events, which are important to treatment choice. In aggregate analyses, this is usually addressed by measuring the distributional treatment effect (DTE), such as differences in quantiles or tail expectations between treatment groups. Hypothetically, one can similarly fit conditional quantile regressions in each treatment group and take their difference, but this would not be robust to misspecification or provide agnostic best-in-class predictions. We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a class of problems that includes conditional quantile treatment effects, conditional super-quantile treatment effects, and conditional treatment effects on coherent risk measures given by f-divergences. Our method is based on constructing a special pseudo-outcome and regressing it on covariates using any regression learner. Our method is model-agnostic in that it can provide the best projection of CDTE onto the regression model class. Our method is robust in that even if we learn these nuisances nonparametrically at very slow rates, we can still learn CDTEs at rates that depend on the class complexity and even conduct inferences on linear projections of CDTEs. We investigate the behavior of our proposal in simulations, as well as in a case study of 401(k) eligibility effects on wealth.
more »
« less
- Award ID(s):
- 1846210
- PAR ID:
- 10406744
- Date Published:
- Journal Name:
- Proceedings of the 26th International Conference on Artificial Intelligence and Statistics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by robust and quantile regression problems, we investigate the stochastic gradient descent (SGD) algorithm for minimizing an objective functionfthat is locally strongly convex with a sub--quadratic tail. This setting covers many widely used online statistical methods. We introduce a novel piecewise Lyapunov function that enables us to handle functionsfwith only first-order differentiability, which includes a wide range of popular loss functions such as Huber loss. Leveraging our proposed Lyapunov function, we derive finite-time moment bounds under general diminishing stepsizes, as well as constant stepsizes. We further establish the weak convergence, central limit theorem and bias characterization under constant stepsize, providing the first geometrical convergence result for sub--quadratic SGD. Our results have wide applications, especially in online statistical methods. In particular, we discuss two applications of our results. 1) Online robust regression: We consider a corrupted linear model with sub--exponential covariates and heavy--tailed noise. Our analysis provides convergence rates comparable to those for corrupted models with Gaussian covariates and noise. 2) Online quantile regression: Importantly, our results relax the common assumption in prior work that the conditional density is continuous and provide a more fine-grained analysis for the moment bounds.more » « less
-
We study the problem of learning conditional average treatment effects (CATE) from observational data with unobserved confounders. The CATE function maps baseline covariates to individual causal effect predictions and is key for personalized assessments. Recent work has focused on how to learn CATE under unconfoundedness, i.e., when there are no unobserved confounders. Since CATE may not be identified when unconfoundedness is violated, we develop a functional interval estimator that predicts bounds on the individual causal effects under realistic violations of unconfoundedness. Our estimator takes the form of a weighted kernel estimator with weights that vary adversarially. We prove that our estimator is sharp in that it converges exactly to the tightest bounds possible on CATE when there may be unobserved confounders. Further, we study personalized decision rules derived from our estimator and prove that they achieve optimal minimax regret asymptotically. We assess our approach in a simulation study as well as demonstrate its application in the case of hormone replacement therapy by comparing conclusions from a real observational study and clinical trial.more » « less
-
Estimation of heterogeneous causal effects—that is, how effects of policies and treatments vary across subjects—is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper, we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a nonstandard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid.more » « less
-
Current causal inference approaches for estimating conditional average treatment effects (CATEs) often prioritize accuracy. However, in resource constrained settings, decision makers may only need a ranking of individuals based on their estimated CATE. In these scenarios, exact CATE estimation may be an unnecessarily challenging task, particularly when the underlying function is difficult to learn. In this work, we study the relationship between CATE estimation and optimizing for CATE ranking, demonstrating that optimizing for ranking may be more appropriate than optimizing for accuracy in certain settings. Guided by our analysis, we propose an approach to directly optimize for rankings of individuals to inform treatment assignment that aims to maximize benefit. Our tree-based approach maximizes the expected benefit of the treatment assignment using a novel splitting criteria. In an empirical case-study across synthetic datasets, our approach leads to better treatment assignments compared to CATE estimation methods as measured by expected total benefit. By providing a practical and efficient approach to learning a CATE ranking, this work offers an important step towards bridging the gap between CATE estimation techniques and their downstream applications.more » « less
An official website of the United States government

