skip to main content


Title: Investigating the role of low level reinforcement reflex loops in insect locomotion
Abstract Insects are highly capable walkers, but many questions remain regarding how the insect nervous system controls locomotion. One particular question is how information is communicated between the ‘lower level’ ventral nerve cord (VNC) and the ‘higher level’ head ganglia to facilitate control. In this work, we seek to explore this question by investigating how systems traditionally described as ‘positive feedback’ may initiate and maintain stepping in the VNC with limited information exchanged between lower and higher level centers. We focus on the ‘reflex reversal’ of the stick insect femur-tibia joint between a resistance reflex (RR) and an active reaction in response to joint flexion, as well as the activation of populations of descending dorsal median unpaired (desDUM) neurons from limb strain as our primary reflex loops. We present the development of a neuromechanical model of the stick insect ( Carausius morosus ) femur-tibia (FTi) and coxa-trochanter joint control networks ‘in-the-loop’ with a physical robotic limb. The control network generates motor commands for the robotic limb, whose motion and forces generate sensory feedback for the network. We based our network architecture on the anatomy of the non-spiking interneuron joint control network that controls the FTi joint, extrapolated network connectivity based on known muscle responses, and previously developed mechanisms to produce ‘sideways stepping’. Previous studies hypothesized that RR is enacted by selective inhibition of sensory afferents from the femoral chordotonal organ, but no study has tested this hypothesis with a model of an intact limb. We found that inhibiting the network’s flexion position and velocity afferents generated a reflex reversal in the robot limb’s FTi joint. We also explored the intact network’s ability to sustain steady locomotion on our test limb. Our results suggested that the reflex reversal and limb strain reinforcement mechanisms are both necessary but individually insufficient to produce and maintain rhythmic stepping in the limb, which can be initiated or halted by brief, transient descending signals. Removing portions of this feedback loop or creating a large enough disruption can halt stepping independent of the higher-level centers. We conclude by discussing why the nervous system might control motor output in this manner, as well as how to apply these findings to generalized nervous system understanding and improved robotic control.  more » « less
Award ID(s):
2015317
NSF-PAR ID:
10335092
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
16
Issue:
6
ISSN:
1748-3182
Page Range / eLocation ID:
065008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Meder, F. ; Hunt, A. ; Margheri, L. ; Mura, A. ; Mazzolai, B. (Ed.)
    Insects use various sensory organs to monitor proprioceptive and exteroceptive information during walking. The measurement of forces in the exoskeleton is facilitated by campaniform sensilla (CS), which monitor resisted muscle forces through the detection of exoskeletal strains. CS are commonly found in leg segments arranged in fields, groups, or as single units. Most insects have the highest density of sensor locations on the trochanter, a proximal leg segment. CS are arranged homologously across species, suggesting comparable functions despite noted morphological differences. Furthermore, the trochanter–femur joint is mobile in some species and fused in others. To investigate how different morphological arrangements influence strain sensing in different insect species, we utilized two robotic models of the legs of the fruit fly Drosophila melanogaster and the stick insect Carausius morosus. Both insect species are past and present model organisms for unraveling aspects of motor control, thus providing extensive information on sensor morphology and, in-part, function. The robotic models were dynamically scaled to the legs of the insects, with strain gauges placed with correct orientations according to published data. Strains were detected during stepping on a treadmill, and the sensor locations and leg morphology played noticeable roles in the strains that were measured. Moreover, the sensor locations that were absent in one species relative to the other measured strains that were also being measured by the existing sensors. These findings contributed to our understanding of load sensing in animal locomotion and the relevance of sensory organ morphology in motor control. 
    more » « less
  2. Abstract

    Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles.

     
    more » « less
  3. Sport-related injuries to articular structures often alter the sensory information conveyed by joint structures to the nervous system. However, the role of joint sensory afferents in motor control is still unclear. Here, we evaluate the role of knee joint sensory afferents in the control of quadriceps muscles, hypothesizing that such sensory information modulates control strategies that limit patellofemoreal joint loading. We compared locomotor kinematics and muscle activity before and after inhibition of knee sensory afferents by injection of lidocaine into the knee capsule of rats. We evaluated whether this inhibition reduced the strength of correlation between the activity of vastus medialis (VM) and vastus lateralis (VL) both across strides and within each stride, coordination patterns that limit net mediolateral patellofemoral forces. We also evaluated whether this inhibition altered correlations among the other quadriceps muscle activity, the time-profiles of individual EMG envelopes, or movement kinematics. Neither the EMG envelopes nor limb kinematics was affected by the inhibition of knee sensory afferents. This perturbation also did not affect the correlations between VM and VL, suggesting that the regulation of patellofemoral joint loading is mediated by different mechanisms. However, inhibition of knee sensory afferents caused a significant reduction in the correlation between vastus intermedius (VI) and both VM and VL across, but not within, strides. Knee joint sensory afferents may therefore modulate the coordination between the vasti muscles but only at coarse time scales. Injuries compromising joint afferents might result in altered muscle coordination, potentially leading to persistent internal joint stresses and strains. NEW & NOTEWORTHY Sensory afferents originating from knee joint receptors provide the nervous system with information about the internal state of the joint. In this study, we show that these sensory signals are used to modulate the covariations among the activity of a subset of vasti muscles across strides of locomotion. Sport-related injuries that damage joint receptors may therefore compromise these mechanisms of muscle coordination, potentially leading to persistent internal joint stresses and strains. 
    more » « less
  4. Meder, F. ; Hunt, A. ; Margheri, L. ; Mura, A. ; Mazzolai, B. (Ed.)
    Sensory feedback from sense organs during animal locomotion can be heavily influenced by an organism’s mechanical structure. In insects, the interplay between sensing and mechanics can be demonstrated in the campaniform sensilla (CS) strain sensors located across the exoskeleton. Leg CS are highly sensitive to the loading state of the limb. In walking, loading is primarily influenced by ground reaction forces (GRF) mediated by the foot, or tarsus. The complex morphology of the tarsus provides compliance, passive and active substrate grip, and an increased moment arm for the GRF, all of which impact leg loading and the resulting CS discharge. To increase the biomimicry of robots we use to study strain feedback during insect walking, we have developed a series of tarsi for our robotic model of a Carausius morosus middle leg. We seek the simplest design that mimics tarsus functionality. Tarsi were designed with varying degrees of compliance, passive grip, and biomimetic structure. We created elastic silicone tarsal joints for several of these models and found that they produced linear stiffness within joint limits across different joint morphologies. Strain gauges positioned in CS locations on the trochanterofemur and tibia recorded strain while the leg stepped on a treadmill. Most, but not all, designs increased axial strain magnitude compared to previous data with no tarsus. Every tarsus design produced positive transversal strain in the tibia, indicating axial torsion in addition to bending. Sudden increases in tibial strain reflected leg slipping during stance. This data show how different aspects of the tarsus may mediate leg loading, allowing us to improve the mechanical biomimicry of future robotic test platforms. 
    more » « less
  5. Animals utilize a number of neuronal systems to produce locomotion. One type of sensory organ that contributes in insects is the campaniform sensillum (CS) that measures the load on their legs. Groups of the receptors are found on high stress regions of the leg exoskeleton and they have significant effects in adapting walking behavior. Recording from these sensors in freely moving animals is limited by technical constraints. To better understand the load feedback signaled by CS to the nervous system, we have constructed a dynamically scaled robotic model of the Carausius morosus stick insect middle leg. The leg steps on a treadmill and supports weight during stance to simulate body weight. Strain gauges were mounted in the same positions and orientations as four key CS groups (Groups 3, 4, 6B, and 6A). Continuous data from the strain gauges were processed through a previously published dynamic computational model of CS discharge. Our experiments suggest that under different stepping conditions (e.g., changing “body” weight, phasic load stimuli, slipping foot), the CS sensory discharge robustly signals increases in force, such as at the beginning of stance, and decreases in force, such as at the end of stance or when the foot slips. Such signals would be crucial for an insect or robot to maintain intra- and inter-leg coordination while walking over extreme terrain. 
    more » « less