skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Getting to "rate optimal" in ranking & selection
In their 2004 seminal paper, Glynn and Juneja formally and precisely established the rate-optimal, probability of incorrect-selection, replication allocation scheme for selecting the best of k simulated systems. In the case of independent, normally distributed outputs this allocation has a simple form that depends in an intuitively appealing way on the true means and variances. Of course the means and (typically) variances are unknown, but the rate-optimal allocation provides a target for implementable, dynamic, data-driven policies to achieve. In this paper we compare the empirical behavior of four related replication-allocation policies: mCEI from Chen and Rzyhov and our new gCEI policy that both converge to the Glynn and Juneja allocation; AOMAP from Peng and Fu that converges to the OCBA optimal allocation; and TTTS from Russo that targets the rate of convergence of the posterior probability of incorrect selection. We find that these policies have distinctly different behavior in some settings.  more » « less
Award ID(s):
1854562
PAR ID:
10335103
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2021 Winter Simulation Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper studies a remote sensing system where multiple wireless sensors generate possibly noisy information updates of various surveillance fields and delivering these updates to a control center over a wireless network. The control center needs a sufficient number of recently generated information updates to have an accurate estimate of the current system status, which is critical for the control center to make appropriate control decisions. The goal of this work is then to design the optimal policy for scheduling the transmissions of information updates. Through Brownian approximation, we demonstrate that the control center’s ability to make accurate real-time estimates depends on the averages and temporal variances of the delivery processes. We then formulate a constrained optimization problem to find the optimal means and variances. We also develop a simple online scheduling policy that employs the optimal means and variances to achieve the optimal system-wide performance. Simulation results show that our scheduling policy enjoys fast convergence speed and better performance when compared to other state-of-the-art policies. 
    more » « less
  2. Lam, H; Azar, E; Batur, D; Gao, S; Xie, W; Hunter, S R; Rossetti, M D (Ed.)
    This paper studies the allocation of simulation effort in a ranking-and-selection (R&S) problem with the goal of selecting a system whose performance is within a given tolerance of the best. We apply large-deviations theory to derive an optimal allocation for maximizing the rate at which the so-called probability of good selection (PGS) asymptotically approaches one, assuming that systems’ output distributions are known. An interesting property of the optimal allocation is that some good systems may receive a sampling ratio of zero. We demonstrate through numerical experiments that this property leads to serious practical consequences, specifically when designing adaptive R&S algorithms. In particular, we observe that the convergence and even consistency of a simple plug-in algorithm designed for the PGS goal can be negatively impacted. We offer empirical evidence of these challenges and a preliminary exploration of a potential correction. 
    more » « less
  3. This paper proposes two fully sequential procedures for selecting the best system with a guaranteed probability of correct selection (PCS). The main features of the proposed procedures include the following: (1) adopting a Bonferroni-free model that overcomes the conservativeness of the Bonferroni correction and delivers the exact probabilistic guarantee without overshooting; (2) conducting always valid and fully sequential hypothesis tests that enable continuous monitoring of each candidate system and control the type I error rate (or equivalently, PCS) at a prescribed level; and (3) assuming an indifference-zone-flexible formulation, which means that the indifference-zone parameter is not indispensable but could be helpful if provided. We establish statistical validity and asymptotic efficiency for the proposed procedures under normality settings with and without the knowledge of true variances. Numerical studies conducted under various configurations corroborate the theoretical findings and demonstrate the superiority of the proposed procedures. Funding: W. Wang and H. Wan were supported in part by CollinStar Capital Pty Ltd. X. Chen was supported in part by the National Science Foundation [Grant IIS-1849300 and CAREER CMMI-1846663]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2023.2447 . 
    more » « less
  4. Optimal resource allocation in wireless systems still stands as a rather challenging task due to the inherent statistical characteristics of channel fading. On the one hand, minimax/outage-optimal policies are often overconservative and analytically intractable, despite advertising maximally reliable system performance. On the other hand, ergodic-optimal resource allocation policies are often susceptible to the statistical dispersion of heavy-tailed fading channels, leading to relatively frequent drastic performance drops. We investigate a new risk-aware formulation of the classical stochastic resource allocation problem for point-to-point power-constrained communication networks over fading channels with no cross-interference, by leveraging the Conditional Value-at-Risk (CV@R) as a coherent measure of risk. We rigorously derive closed-form expressions for the CV@R-optimal risk-aware resource allocation policy, as well as the optimal associated quantiles of the corresponding user rate functions by capitalizing on the underlying fading distribution, parameterized by dual variables. We then develop a purely dual tail waterfilling scheme, achieving significantly more rapid and assured convergence of dual variables, as compared with the primal-dual tail waterfilling algorithm, recently proposed in the literature. The effectiveness of the proposed scheme is also readily confirmed via detailed numerical simulations. 
    more » « less
  5. null (Ed.)
    We develop a framework for designing simple and efficient policies for a family of online allocation and pricing problems that includes online packing, budget-constrained probing, dynamic pricing, and online contextual bandits with knapsacks. In each case, we evaluate the performance of our policies in terms of their regret (i.e., additive gap) relative to an offline controller that is endowed with more information than the online controller. Our framework is based on Bellman inequalities, which decompose the loss of an algorithm into two distinct sources of error: (1) arising from computational tractability issues, and (2) arising from estimation/prediction of random trajectories. Balancing these errors guides the choice of benchmarks, and leads to policies that are both tractable and have strong performance guarantees. In particular, in all our examples, we demonstrate constant-regret policies that only require resolving a linear program in each period, followed by a simple greedy action-selection rule; thus, our policies are practical as well as provably near optimal. 
    more » « less