skip to main content

Title: Isolating the Role of Corticosterone in the Hypothalamic-Pituitary-Gonadal Transcriptomic Stress Response
Investigation of the negative impacts of stress on reproduction has largely centered around the effects of the adrenal steroid hormone, corticosterone (CORT), and its influence on a system of tissues vital for reproduction—the hypothalamus of the brain, the pituitary gland, and the gonads (the HPG axis). Research on the action of CORT on the HPG axis has predominated the stress and reproductive biology literature, potentially overshadowing other influential mediators. To gain a more complete understanding of how elevated CORT affects transcriptomic activity of the HPG axis, we experimentally examined its role in male and female rock doves ( Columba livia ). We exogenously administrated CORT to mimic circulating levels during the stress response, specifically 30 min of restraint stress, an experimental paradigm known to increase circulating CORT in vertebrates. We examined all changes in transcription within each level of the HPG axis as compared to both restraint-stressed birds and vehicle-injected controls. We also investigated the differential transcriptomic response to CORT and restraint-stress in each sex. We report causal and sex-specific effects of CORT on the HPG transcriptomic stress response. Restraint stress caused 1567 genes to uniquely differentially express while elevated circulating CORT was responsible for the differential expression of 304 genes. more » Only 108 genes in females and 8 in males differentially expressed in subjects that underwent restraint stress and those who were given exogenous CORT. In response to elevated CORT and restraint-stress, both sexes shared the differential expression of 5 genes, KCNJ5 , CISH , PTGER3 , CEBPD , and ZBTB16 , all located in the pituitary. The known functions of these genes suggest potential influence of elevated CORT on immune function and prolactin synthesis. Gene expression unique to each sex indicated that elevated CORT affected more gene transcription in females than males (78 genes versus 3 genes, respectively). To our knowledge, this is the first study to isolate the role of CORT in HPG genomic transcription during a stress response. We present an extensive and openly accessible view of the role corticosterone in the HPG transcriptomic stress response. Because the HPG system is well conserved across vertebrates, these data have the potential to inspire new therapeutic strategies for reproductive dysregulation in multiple vertebrate systems, including our own. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1846381
Publication Date:
NSF-PAR ID:
10335130
Journal Name:
Frontiers in Endocrinology
Volume:
12
ISSN:
1664-2392
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Adrenal glucocorticoids (GCs) are increasingly recognized as important modulators of male courtship signals, suggesting that circulating levels of these steroids can play a central role in sexual selection. However, few studies have examined whether GC-mediated effects on male sexual signals actually impact mate choice by females. Here, we examine how corticosterone (CORT)-mediated changes in the vocalizations of male green treefrogs, Dryophytes cinereus, influence attractiveness to females. In this species, agonistic acoustic signaling between rival males competing for mates increases circulating CORT levels in contest losers. Acute elevations in CORT, in turn, decrease the duration of male advertisement calls and increase the latency between successive calls, resulting in a net reduction in vocal effort (the amount of signaling per unit time) that occurs independently of changes in circulating androgens. Based on known preferences for acoustic features in D. cinereus, and other anuran species, the direction of CORT-mediated effects on temporal call characteristics is expected to compromise attractiveness to females, but whether they are of sufficient magnitude to impact female mate choice decisions is unclear. To examine whether CORT-mediated effects on male advertisement calls reduce attractiveness to females, we broadcast vocalizations in dual speaker playback experiments approximating the mean and 1more »SD above and below the mean call duration and vocal effort values (the two primary vocal features impacted by elevated CORT) of males with low and high CORT levels. Results revealed strong preferences by females for the calls characteristic of males with low CORT in tests using the approximate mean and 1 SD above the mean call duration and vocal effort values, but females did not show a preference for calls of males with low CORT in trials using call values approximating 1 SD below the mean. Overall, females preferred males with signal traits predictive of low CORT, however this effect was nonlinear with attenuated preferences when signal alternatives differed only marginally indicating a possible thresholding effect. Specifically, females appeared to discriminate between males with low versus high CORT based primarily on differences in call rates associated with CORT-mediated changes in call duration and vocal effort. Our results highlight that changes in circulating CORT during male–male vocal interactions can decrease attractiveness to females, suggesting that circulating levels of CORT can play a critical role in both intra- and intersexual selection.« less
  2. Hormones mediate physiological and behavioral changes in adults as they transition into reproduction. In this study, we characterize the circulating levels of five key hormones involved in reproduction in rock doves ( Columba livia ): corticosterone, progesterone, estradiol, testosterone, and prolactin using univariate and multivariate approaches. We show similar patterns as previous studies in the overall patterns in circulating levels of these hormones, i.e., testosterone (males) and estradiol (females) high during nest-building or egg-laying, prolactin increasing at mid-incubation and peaking at hatching (both sexes), and elevated corticosterone levels in later incubation and early nestling development. In our investigation of hormone co-variation, we find a strong correlation between prolactin and corticosterone across sampling stages and similarities in earlier (early to mid-incubation) compared to later (late incubation to nestling d9) sampling stages in males and females. Finally, we utilized experimental manipulations to simulate nest loss or altered caregiving lengths to test whether external cues, internal timing, or a combination of these factors contributed most to hormone variation. Following nest loss, we found that both males and females responded to the external cue. Males generally responded quickly following nest loss by increasing circulating testosterone, but this response was muted when nest loss occurredmore »early in reproduction. Similar treatment type, e.g., removal of eggs, clustered similarly in hormone space. These results suggest internal drivers limited male response early in reproduction to nest loss. In contrast, circulating levels of these hormones in females either did not change or decreased following nest manipulation suggesting responsiveness to external drivers, but unlike males, this result suggests that reproductive processes were decreasing.« less
  3. Abstract

    Major depressive disorder (MDD) is a leading cause of disability worldwide. Individuals with MDD exhibit decreased motivation and deficits in reward processing. In a subset of MDD patients, chronic dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs, resulting in increased levels of the ‘stress hormone’ cortisol during the normal rest period (i.e., evening and night). However, the mechanistic relationship between chronically elevated resting cortisol and behavioral deficits in motivation and reward processing remains unclear. Given that women are diagnosed with MDD at twice the rate of men, it is important to understand whether the mechanisms linking cortisol to the symptoms of MDD differ by sex. In this study, we used subcutaneous implants to chronically elevate free plasma corticosterone (the rodent homolog of cortisol; ‘CORT’) during the rest period in male and female mice and examined changes in behavior and dopamine system function. We found that chronic CORT treatment impaired motivated reward-seeking in both sexes. In female but not male mice, CORT treatment reduced dopamine content in the dorsomedial striatum (DMS). In male but not female mice, CORT treatment impaired the function of the dopamine transporter (DAT) in DMS. From these studies, we conclude that chronic CORT dysregulation impairs motivation bymore »impairing dopaminergic transmission in the DMS, but via different mechanisms in male and female mice. A better understanding of these sex-specific mechanisms could lead to new directions in MDD diagnosis and treatment.

    « less
  4. Abstract Background Patterns of gene expression can be dramatically different between males and females of the same species, in part due to genes on sex chromosomes. Here we test for sex differences in early transcriptomic response to oxidative stress in a species which lacks heteromorphic sex chromosomes, the copepod Tigriopus californicus . Results Male and female individuals were separately exposed to control conditions and pro-oxidant conditions (hydrogen peroxide and paraquat) for periods of 3 hours and 6 hours. Variance partitioning showed the greatest expression variance among individuals, highlighting the important information that can be obscured by the common practice of pooling individuals. Gene expression variance between sexes was greater than that among treatments, showing the profound effect of sex even when males and females share the same genome. Males exhibited a larger response to both pro-oxidants, differentially expressing more than four times as many genes, including up-regulation of more antioxidant genes, heat shock proteins and protease genes. While females differentially expressed fewer genes, the magnitudes of fold change were generally greater, indicating a more targeted response. Although females shared a smaller fraction of differentially expressed genes between stressors and time points, expression patterns of antioxidant and protease genes were moremore »similar between stressors and more GO terms were shared between time points. Conclusions Early transcriptomic responses to the pro-oxidants H 2 O 2 and paraquat in copepods revealed substantial variation among individuals and between sexes. The finding of such profound sex differences in oxidative stress response, even in the absence of sex chromosomes, highlights the importance of studying both sexes and the potential for developing sex-specific strategies to promote optimal health and aging in humans.« less
  5. Abstract

    Female competitive behaviors during courtship can have substantial fitness consequences, yet we know little about the physiological and social mechanisms underlying these behaviors—particularly for females of polygynous lek mating species. We explored the hormonal and social drivers of female intersexual and intrasexual behavior during courtship by males in a captive population of Indian peafowl. We investigated whether (1) female non-stress induced circulating estradiol (E2) and corticosterone (CORT) levels or (2) female dominance status in a dyad predicts female solicitation behavior. We also tested whether female circulating E2 and CORT predict dominant females’ aggressive behaviors toward subordinate females in the courtship context. Our findings demonstrate that females with higher levels of circulating E2 as well as higher levels of circulating CORT solicit more courtships from males. Dominant females also solicit more courtships from males than subordinate females. Female intrasexual aggressive behaviors during courtship, however, were not associated with circulating levels of E2 or CORT. Overall, we conclude that circulating steroid hormones in conjunction with social dominance might play a role in mediating female behaviors associated with competition for mates. Experimental manipulation and measures of hormonal flexibility throughout the breeding season in relation to competitive and sexual behaviors will be necessarymore »to further examine the link between hormonal mechanisms and female behavior in polygynous lekking systems.

    « less