Abstract As animals gain parental experience, they often show more rapid and efficient parental care responses that likely improve offspring survival and fitness. Changes in circulating hormones that underlie reproductive behaviors, including prolactin, have been found to correlate with parental experience in birds and mammals. Altered responsiveness to prolactin in key behavioral centers of the brain may also underlie the effects of experience on parental behaviors. Further, experience may also affect responsiveness to prolactin stimulatory hormones, such as hypothalamic vasoactive intestinal peptide (VIP). While experience has been shown to upregulate neural prolactin receptors and responsiveness in rodents, its effects on prolactin receptor gene expression remain unstudied in birds. To address this, we examined gene expression of pituitary prolactin, hypothalamic prolactin receptors in the preoptic area, hypothalamic VIP, and pituitary VIP receptors in both sexes of the biparental rock dove (Columba livia) when birds were not actively nesting. As age and parental experience are often confounded (i.e.,experienced parents tend to be older than their inexperienced counterparts), we measured gene expression in birds of varying combinations of age (0.6–3 years) and prior reproductive experience (0–12 chicks raised). We found that increasing experience with chicks correlated with lower PRLR expression in the preoptic area, and age correlated with lower VIP expression in birds of both sexes. Pituitary PRL and VIPR expression was not associated with parental experience or age. These results suggest there may be persistent effects of experience and age on neural responsiveness to, and regulation of, prolactin in birds.
more »
« less
Prior parental experience attenuates hormonal stress responses and alters hippocampal glucocorticoid receptors in biparental rock doves
ABSTRACT In the face of challenges, animals must balance investments in reproductive effort versus their own survival. Physiologically, this trade-off may be mediated by glucocorticoid release by the hypothalamic–pituitary–adrenal axis and prolactin release from the pituitary to maintain parental care. The degree to which animals react to and recover from stressors likely affects maintenance of parental behavior and, ultimately, fitness. However, less is known about how gaining parental experience may alter hormonal stress responses and their underlying neuroendocrine mechanisms. To address this gap, we measured the corticosterone (CORT) and prolactin (PRL) stress response in individuals of both sexes of the biparental rock dove (Columba livia) that had never raised chicks versus birds that had fledged at least one chick. We measured both CORT and PRL at baseline and after an acute stressor (30 min restraint). We also measured negative feedback ability by administering dexamethasone, a synthetic glucocorticoid that suppresses CORT release, and measured CORT and PRL after 60 min. All hormones were measured when birds were not actively nesting to assess whether effects of parental experience extend beyond the breeding bout. Experienced birds had lower stress-induced and negative-feedback CORT, and higher stress-induced PRL than inexperienced birds. In a separate experiment, we measured glucocorticoid receptor subtype expression in the hippocampus, a key site of negative feedback regulation. Experienced birds showed higher glucocorticoid receptor expression than inexperienced controls, which may mediate their ability to attenuate CORT release. Together, these results shed light on potential mechanisms by which gaining experience may improve parental performance and fitness.
more »
« less
- Award ID(s):
- 1846381
- PAR ID:
- 10469644
- Publisher / Repository:
- The Company of Biologists
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- Volume:
- 225
- Issue:
- 24
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Investigation of the negative impacts of stress on reproduction has largely centered around the effects of the adrenal steroid hormone, corticosterone (CORT), and its influence on a system of tissues vital for reproduction—the hypothalamus of the brain, the pituitary gland, and the gonads (the HPG axis). Research on the action of CORT on the HPG axis has predominated the stress and reproductive biology literature, potentially overshadowing other influential mediators. To gain a more complete understanding of how elevated CORT affects transcriptomic activity of the HPG axis, we experimentally examined its role in male and female rock doves ( Columba livia ). We exogenously administrated CORT to mimic circulating levels during the stress response, specifically 30 min of restraint stress, an experimental paradigm known to increase circulating CORT in vertebrates. We examined all changes in transcription within each level of the HPG axis as compared to both restraint-stressed birds and vehicle-injected controls. We also investigated the differential transcriptomic response to CORT and restraint-stress in each sex. We report causal and sex-specific effects of CORT on the HPG transcriptomic stress response. Restraint stress caused 1567 genes to uniquely differentially express while elevated circulating CORT was responsible for the differential expression of 304 genes. Only 108 genes in females and 8 in males differentially expressed in subjects that underwent restraint stress and those who were given exogenous CORT. In response to elevated CORT and restraint-stress, both sexes shared the differential expression of 5 genes, KCNJ5 , CISH , PTGER3 , CEBPD , and ZBTB16 , all located in the pituitary. The known functions of these genes suggest potential influence of elevated CORT on immune function and prolactin synthesis. Gene expression unique to each sex indicated that elevated CORT affected more gene transcription in females than males (78 genes versus 3 genes, respectively). To our knowledge, this is the first study to isolate the role of CORT in HPG genomic transcription during a stress response. We present an extensive and openly accessible view of the role corticosterone in the HPG transcriptomic stress response. Because the HPG system is well conserved across vertebrates, these data have the potential to inspire new therapeutic strategies for reproductive dysregulation in multiple vertebrate systems, including our own.more » « less
-
Abstract Negative feedback of the vertebrate stress response via the hypothalamic–pituitary–adrenal (HPA) axis is regulated by glucocorticoid receptors in the brain. Epigenetic modification of the glucocorticoid receptor gene (Nr3c1), including DNA methylation of the promoter region, can influence expression of these receptors, impacting behavior, physiology, and fitness. However, we still know little about the long-term effects of these modifications on fitness. To better understand these fitness effects, we must first develop a non-lethal method to assess DNA methylation in the brain that allows for multiple measurements throughout an organism’s lifetime. In this study, we aimed to determine if blood is a viable biomarker for Nr3c1 DNA methylation in two brain regions (hippocampus and hypothalamus) in adult European starlings (Sturnus vulgaris). We found that DNA methylation of CpG sites in the complete Nr3c1 putative promoter varied among tissue types and was lowest in blood. Although we identified a similar cluster of correlated Nr3c1 putative promoter CpG sites within each tissue, this cluster did not show any correlation in DNA methylation among tissues. Additional studies should consider the role of the developmental environment in producing epigenetic modifications in different tissues.more » « less
-
Abstract Vertebrates respond to a diversity of stressors by rapidly elevating glucocorticoid (GC) levels. The changes in physiology and behavior triggered by this response can be crucial for surviving a variety of challenges. Yet the same process that is invaluable in coping with immediate threats can also impose substantial damage over time. In addition to the pathological effects of long-term exposure to stress hormones, even relatively brief elevations can impair the expression of a variety of behaviors and physiological processes central to fitness, including sexual behavior, parental behavior, and immune function. Therefore, the ability to rapidly and effectively terminate the short-term response to stress may be fundamental to surviving and reproducing in dynamic environments. Here we review the evidence that variation in the ability to terminate the stress response through negative feedback is an important component of stress coping capacity. We suggest that coping capacity may also be influenced by variation in the dynamic regulation of GCs—specifically, the ability to rapidly turn on and off the stress response. Most tests of the fitness effects of these traits to date have focused on organisms experiencing severe or prolonged stressors. Here we use data collected from a long-term study of tree swallows (Tachycineta bicolor) to test whether variation in negative feedback, or other measures of GC regulation, predict components of fitness in non-chronically stressed populations. We find relatively consistent, but generally weak relationships between different fitness components and the strength of negative feedback. Reproductive success was highest in individuals that both mounted a robust stress response and had strong negative feedback. We did not see consistent evidence of a relationship between negative feedback and adult or nestling survival: negative feedback was retained in the best supported models of nestling and adult survival, but in two of three survival-related analyses the intercept-only model received only slightly less support. Both negative feedback and stress-induced GC levels—but not baseline GCs—were individually repeatable. These measures of GC activity did not consistently covary across ages and life history stages, indicating that they are independently regulated. Overall, the patterns seen here are consistent with the predictions that negative feedback—and the dynamic regulation of GCs—are important components of stress coping capacity, but that the fitness benefits of having strong negative feedback during the reproductive period are likely to manifest primarily in individuals exposed to chronic or repeated stressors.more » « less
-
The Trivers–Willard hypothesis states that mothers should adjust their offspring sex ratio according to their own condition and the environment they face during breeding. Past tests of this hypothesis have focused on how natural variation in weather, food availability, or predation pressure shapes sex allocation trade-offs. However, anthropogenic activities, such as urbanization, can alter all of the above characteristics presenting animals with novel challenges in optimizing their brood sex ratio. Previous research has examined how urban living influences individual body condition in several bird taxa, but few have explored subsequent impacts on secondary offspring sex ratio. One likely mediator of the link between environmental conditions, parental condition, and sex ratios is corticosterone (CORT), the primary glucocorticoid in birds. Research on CORT’s influence on sex ratios has focused solely on maternal CORT. However, for species with biparental care, paternal CORT or the similarity of maternal and paternal phenotypes may also help ensure that offspring demand matches parental care quality. To test these hypotheses, we explore offspring secondary sex ratios in European starlings (Sturnus vulgaris). We did not find an effect of site or parental body condition on the production of the more costly sex (males). Instead, we found preliminary evidence suggesting that the similarity of maternal and paternal CORT levels within a breeding pair may increase the likelihood of successfully fledging sons. Maternal and paternal CORT were not significant predictors of secondary sex ratio, suggesting that parental similarity, rather than parental CORT alone, could play a role in shaping secondary offspring sex ratios, but additional work is needed to support this pattern. Starlings are considered an urban-adapted species, making them a compelling model for future studies of the relationship between urbanization, parental body condition, and sex ratios.more » « less
An official website of the United States government

