skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Detection of early-stage lung cancer with an in vitro panel of activity-based biosensors to measure inflammatory protease enzymes.
e20551 Background: Enzyme activity is at the center of all biological processes. When these activities are misregulated by changes in sequence, expression, or activity, pathologies emerge. Misregulation of protease enzymes such as Matrix Metalloproteinases and Cathepsins play a key role in the pathophysiology of cancer. We describe here a novel class of graphene-based, cost effective biosensors that can detect altered protease activation in a blood sample from early stage lung cancer patients. Methods: The Gene Expression Omnibus (GEO) tool was used to identify proteases differentially expressed in lung cancer and matched normal tissue. Biosensors were assembled on a graphene backbone annotated with one of a panel of fluorescently tagged peptides. The graphene quenches fluorescence until the peptide is either cleaved by active proteases or altered by post-translational modification. 19 protease biosensors were evaluated on 431 commercially collected serum samples from non-lung cancer controls (69%) and pathologically confirmed lung cancer cases (31%) tested over two independent cohorts. Serum was incubated with each of the 19 biosensors and enzyme activity was measured indirectly as a continuous variable by a fluorescence plate reader. Analysis was performed using Emerge, a proprietary predictive and classification modeling system based on massively parallel evolving “Turing machine” algorithms. Each analysis stratified allocation into training and testing sets, and reserved an out-of-sample validation set for reporting. Results: 256 clinical samples were initially evaluated including 35% cancer cases evenly distributed across stages I (29%), II (26%), III (24%) and IV (21%). The case controls included common co-morbidies in the at-risk population such as COPD, chronic bronchitis, and benign nodules (19%). Using the Emerge classification analysis, biosensor biomarkers alone (no clinical factors) demonstrated Sensitivity (Se.) = 92% (CI 82%-99%) and Specificity (Sp.) = 82% (CI 69%-91%) in the out-of-sample set. An independent cohort of 175 clinical cases (age 67±8, 52% male) focused on early detection (26% cancer, 70% Stage I, 30% Stage II/III) were similarly evaluated. Classification showed Se. = 100% (CI 79%-100%) and Sp. = 93% (CI 80%-99%) in the out-of-sample set. For the entire dataset of 175 samples, Se. = 100% (CI 92%-100%) and Sp. = 97% (CI 92%-99%) was observed. Conclusions: Lung cancer can be treated if it is diagnosed when still localized. Despite clear data showing screening for lung cancer by Low Dose Computed Tomography (LDCT) is effective, screening compliance remains very low. Protease biosensors provide a cost effective additional specialized tool with high sensitivity and specificity in detection of early stage lung cancer. A large prospective trial of at-risk smokers with follow up is being conducted to evaluate a commercial version of this assay.  more » « less
Award ID(s):
2125030
PAR ID:
10335201
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Clinical Oncology
Volume:
40
Issue:
16_suppl
ISSN:
0732-183X
Page Range / eLocation ID:
e20551 to e20551
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background Interstitial lung abnormalities (ILA) can be detected on computed tomography (CT) in lung cancer patients and have an association with mortality in advanced non-small cell lung cancer (NSCLC) patients. The aim of this study is to demonstrate the significance of ILA for mortality in patients with stage I NSCLC using Boston Lung Cancer Study cohort. Methods Two hundred and thirty-one patients with stage I NSCLC from 2000 to 2011 were investigated in this retrospective study (median age, 69 years; 93 males, 138 females). ILA was scored on baseline CT scans prior to treatment using a 3-point scale (0 = no evidence of ILA, 1 = equivocal for ILA, 2 = ILA) by a sequential reading method. ILA score 2 was considered the presence of ILA. The difference of overall survival (OS) for patients with different ILA scores were tested via log-rank test and multivariate Cox proportional hazards models were used to estimate hazard ratios (HRs) including ILA score, age, sex, smoking status, and treatment as the confounding variables. Results ILA was present in 22 out of 231 patients (9.5%) with stage I NSCLC. The presence of ILA was associated with shorter OS (patients with ILA score 2, median 3.85 years [95% confidence interval (CI): 3.36 – not reached (NR)]; patients with ILA score 0 or 1, median 10.16 years [95%CI: 8.65 - NR]; P  <  0.0001). In a Cox proportional hazards model, the presence of ILA remained significant for increased risk for death (HR = 2.88, P  = 0.005) after adjusting for age, sex, smoking and treatment. Conclusions ILA was detected on CT in 9.5% of patients with stage I NSCLC. The presence of ILA was significantly associated with a shorter OS and could be an imaging marker of shorter survival in stage I NSCLC. 
    more » « less
  2. Chen, Nan-Hua (Ed.)
    Background:Although the rate of emerging infectious diseases that originate in wildlife has been increasing globally in recent decades, there is currently a lack of epidemiological data from wild animals. Methodology:We used serology to determine prior exposure to foot‐and‐mouth disease virus (FMDV),Brucellaspp., andCoxiella burnetiiand used genetic testing to detect blood‐borne parasitic infections in the generaEhrlichia,Anaplasma,Theileria, andBabesiafrom wildlife in two national parks, Kruger National Park (KNP), South Africa, and Etosha National Park (ENP), Namibia. Serum and whole blood samples were obtained from free‐roaming plains zebra (Equus quagga), greater kudu (Tragelaphus strepsiceros), impala (Aepyceros melampus), and blue wildebeest (Connochaetes taurinus). Risk factors (host species, sex, and sampling park) for infection with each pathogen were assessed, as well as the prevalence and distribution of co‐occurring infections. Results:In KNP 13/29 (45%; confidence interval [CI]: 26%–64%) kudus tested positive for FMD, but none of these reacted to SAT serotypes. For brucellosis, seropositive results were obtained for 3/29 (10%; CI: 2%–27%) kudu samples. Antibodies againstC. burnetiiwere detected in 6/29 (21%; CI: 8%–40%) kudus, 14/21 (67%; CI: 43%–85%) impalas, and 18/39 (46%; CI: 30%–63%) zebras. A total of 28/28 kudus tested positive forTheileriaspp. (100%; CI: 88%–100%) and 27/28 forAnaplasma/Ehrlichiaspp. (96%; CI: 82%–100%), whereas 12/19 impalas (63%) and 2/39 zebra (5%) tested positive forAnaplasma centrale. In ENP, only 1/29 (3%; CI: 0%–18%) wildebeest samples tested positive for FMD. None of the samples tested positive for brucellosis, whileC. burnetiiantibodies were detected in 26/30 wildebeests (87%; CI: 69%–96%), 16/40 kudus (40%; CI: 25%–57%), and 26/26 plains zebras (100%; CI: 87%–100%). A total of 60%Anaplasma/Ehrlichiaspp. and 35%Theileria/Babesiaspp. in kudu and 37% wildebeest tested positive toTheileriasp. (sable), 30% toBabesia occultans, and 3%–7% toAnaplasmaspp. The seroprevalence of Q fever was significantly higher in ENP, whileBrucellaspp.,Anaplasma,Ehrlichia,Theileria, andBabesiaspecies were significantly higher in KNP. Significant coinfections were also identified. Conclusion:This work provided baseline serological and molecular data on 40+ pathogens in four wildlife species from two national parks in southern Africa. 
    more » « less
  3. ImportanceScreening with low-dose computed tomography (CT) has been shown to reduce mortality from lung cancer in randomized clinical trials in which the rate of adherence to follow-up recommendations was over 90%; however, adherence to Lung Computed Tomography Screening Reporting &amp; Data System (Lung-RADS) recommendations has been low in practice. Identifying patients who are at risk of being nonadherent to screening recommendations may enable personalized outreach to improve overall screening adherence. ObjectiveTo identify factors associated with patient nonadherence to Lung-RADS recommendations across multiple screening time points. Design, Setting, and ParticipantsThis cohort study was conducted at a single US academic medical center across 10 geographically distributed sites where lung cancer screening is offered. The study enrolled individuals who underwent low-dose CT screening for lung cancer between July 31, 2013, and November 30, 2021. ExposuresLow-dose CT screening for lung cancer. Main Outcomes and MeasuresThe main outcome was nonadherence to follow-up recommendations for lung cancer screening, defined as failing to complete a recommended or more invasive follow-up examination (ie, diagnostic dose CT, positron emission tomography–CT, or tissue sampling vs low-dose CT) within 15 months (Lung-RADS score, 1 or 2), 9 months (Lung-RADS score, 3), 5 months (Lung-RADS score, 4A), or 3 months (Lung-RADS score, 4B/X). Multivariable logistic regression was used to identify factors associated with patient nonadherence to baseline Lung-RADS recommendations. A generalized estimating equations model was used to assess whether the pattern of longitudinal Lung-RADS scores was associated with patient nonadherence over time. ResultsAmong 1979 included patients, 1111 (56.1%) were aged 65 years or older at baseline screening (mean [SD] age, 65.3 [6.6] years), and 1176 (59.4%) were male. The odds of being nonadherent were lower among patients with a baseline Lung-RADS score of 1 or 2 vs 3 (adjusted odds ratio [AOR], 0.35; 95% CI, 0.25-0.50), 4A (AOR, 0.21; 95% CI, 0.13-0.33), or 4B/X, (AOR, 0.10; 95% CI, 0.05-0.19); with a postgraduate vs college degree (AOR, 0.70; 95% CI, 0.53-0.92); with a family history of lung cancer vs no family history (AOR, 0.74; 95% CI, 0.59-0.93); with a high age-adjusted Charlson Comorbidity Index score (≥4) vs a low score (0 or 1) (AOR, 0.67; 95% CI, 0.46-0.98); in the high vs low income category (AOR, 0.79; 95% CI, 0.65-0.98); and referred by physicians from pulmonary or thoracic-related departments vs another department (AOR, 0.56; 95% CI, 0.44-0.73). Among 830 eligible patients who had completed at least 2 screening examinations, the adjusted odds of being nonadherent to Lung-RADS recommendations at the following screening were increased in patients with consecutive Lung-RADS scores of 1 to 2 (AOR, 1.38; 95% CI, 1.12-1.69). Conclusions and RelevanceIn this retrospective cohort study, patients with consecutive negative lung cancer screening results were more likely to be nonadherent with follow-up recommendations. These individuals are potential candidates for tailored outreach to improve adherence to recommended annual lung cancer screening. 
    more » « less
  4. To sensitively detect multiple and cross-species disease-related targets from a single biological sample in a quick and reliable manner is of high importance in accurately diagnosing and monitoring diseases. Herein, a surface-enhanced Raman scattering (SERS) sensor based on a functionalized multiple-armed tetrahedral DNA nanostructure (FMTDN) immobilized silver nanorod (AgNR) array substrate and Au nanoparticle (AuNP) SERS tags is constructed to achieve both multiplex detection and enhanced sensitivity using a sandwich strategy. The sensor can achieve single, dual, and triple biomarker detections of three lung cancer-related nucleic acid and protein biomarkers, i.e. , miRNA-21, miRNA-486 and carcinoembryonic antigen (CEA) in human serum. The enhanced SERS signals in multiplex detections are due to the DNA self-assembled AuNP clusters on the silver nanorod array during the assay, and the experimentally obtained relative enhancement factor ratios, 150 for AuNP dimers and 840 for AuNP trimers, qualitatively agree with the numerically calculated local electric field enhancements. The proposed FMTDN-functionalized AgNR SERS sensor is capable of multiplex and cross-species detection of nucleic acid and protein biomarkers with improved sensitivity, which has great potential for the screening and clinical diagnosis of cancer in the early stage. 
    more » « less
  5. This clinical study presents a comprehensive investigation into the utility of breath analysis as a non-invasive method for the early detection of lung cancer. The study enrolled 14 lung cancer patients, 14 non-lung cancer controls with diverse medical conditions, and 3 tuberculosis (TB) patients for biomarker discovery. Matching criteria including age, gender, smoking history, and comorbidities were strictly followed to ensure reliable comparisons. A systematic breath sampling protocol utilizing a BIO-VOC sampler was employed, followed by VOC analysis using Thermal Desorption–Gas Chromatography–Mass Spectrometry (TD-GC/MS). The resulting VOC profiles were subjected to stringent statistical analysis, including Orthogonal Projections to Latent Structures—Discriminant Analysis (OPLS-DA), Kruskal–Wallis test, and Receiver Operating Characteristic (ROC) analysis. Notably, 13 VOCs exhibited statistically significant differences between lung cancer patients and controls. The combination of eight VOCs (hexanal, heptanal, octanal, benzaldehyde, undecane, phenylacetaldehyde, decanal, and benzoic acid) demonstrated substantial discriminatory power with an area under the curve (AUC) of 0.85, a sensitivity of 82%, and a specificity of 76% in the discovery set. Validation in an independent cohort yielded an AUC of 0.78, a sensitivity of 78%, and a specificity of 64%. Further analysis revealed that elevated aldehyde levels in lung cancer patients’ breath could be attributed to overactivated Alcohol Dehydrogenase (ADH) pathways in cancerous tissues. Addressing methodological challenges, this study employed a matching of physiological and pathological confounders, controlled room air samples, and standardized breath sampling techniques. Despite the limitations, this study’s findings emphasize the potential of breath analysis as a diagnostic tool for lung cancer and suggest its utility in differentiating tuberculosis from lung cancer. However, further research and validation are warranted for the translation of these findings into clinical practice. 
    more » « less