ImportanceThe frequent occurrence of cognitive symptoms in post–COVID-19 condition has been described, but the nature of these symptoms and their demographic and functional factors are not well characterized in generalizable populations. ObjectiveTo investigate the prevalence of self-reported cognitive symptoms in post–COVID-19 condition, in comparison with individuals with prior acute SARS-CoV-2 infection who did not develop post–COVID-19 condition, and their association with other individual features, including depressive symptoms and functional status. Design, Setting, and ParticipantsTwo waves of a 50-state nonprobability population-based internet survey conducted between December 22, 2022, and May 5, 2023. Participants included survey respondents aged 18 years and older. ExposurePost–COVID-19 condition, defined as self-report of symptoms attributed to COVID-19 beyond 2 months after the initial month of illness. Main Outcomes and MeasuresSeven items from the Neuro-QoL cognition battery assessing the frequency of cognitive symptoms in the past week and patient Health Questionnaire-9. ResultsThe 14 767 individuals reporting test-confirmed COVID-19 illness at least 2 months before the survey had a mean (SD) age of 44.6 (16.3) years; 568 (3.8%) were Asian, 1484 (10.0%) were Black, 1408 (9.5%) were Hispanic, and 10 811 (73.2%) were White. A total of 10 037 respondents (68.0%) were women and 4730 (32.0%) were men. Of the 1683 individuals reporting post–COVID-19 condition, 955 (56.7%) reported at least 1 cognitive symptom experienced daily, compared with 3552 of 13 084 (27.1%) of those who did not report post–COVID-19 condition. More daily cognitive symptoms were associated with a greater likelihood of reporting at least moderate interference with functioning (unadjusted odds ratio [OR], 1.31 [95% CI, 1.25-1.36]; adjusted [AOR], 1.30 [95% CI, 1.25-1.36]), lesser likelihood of full-time employment (unadjusted OR, 0.95 [95% CI, 0.91-0.99]; AOR, 0.92 [95% CI, 0.88-0.96]) and greater severity of depressive symptoms (unadjusted coefficient, 1.40 [95% CI, 1.29-1.51]; adjusted coefficient 1.27 [95% CI, 1.17-1.38). After including depressive symptoms in regression models, associations were also found between cognitive symptoms and at least moderate interference with everyday functioning (AOR, 1.27 [95% CI, 1.21-1.33]) and between cognitive symptoms and lower odds of full-time employment (AOR, 0.92 [95% CI, 0.88-0.97]). Conclusions and RelevanceThe findings of this survey study of US adults suggest that cognitive symptoms are common among individuals with post–COVID-19 condition and associated with greater self-reported functional impairment, lesser likelihood of full-time employment, and greater depressive symptom severity. Screening for and addressing cognitive symptoms is an important component of the public health response to post–COVID-19 condition. 
                        more » 
                        « less   
                    
                            
                            Factors Associated With Nonadherence to Lung Cancer Screening Across Multiple Screening Time Points
                        
                    
    
            ImportanceScreening with low-dose computed tomography (CT) has been shown to reduce mortality from lung cancer in randomized clinical trials in which the rate of adherence to follow-up recommendations was over 90%; however, adherence to Lung Computed Tomography Screening Reporting & Data System (Lung-RADS) recommendations has been low in practice. Identifying patients who are at risk of being nonadherent to screening recommendations may enable personalized outreach to improve overall screening adherence. ObjectiveTo identify factors associated with patient nonadherence to Lung-RADS recommendations across multiple screening time points. Design, Setting, and ParticipantsThis cohort study was conducted at a single US academic medical center across 10 geographically distributed sites where lung cancer screening is offered. The study enrolled individuals who underwent low-dose CT screening for lung cancer between July 31, 2013, and November 30, 2021. ExposuresLow-dose CT screening for lung cancer. Main Outcomes and MeasuresThe main outcome was nonadherence to follow-up recommendations for lung cancer screening, defined as failing to complete a recommended or more invasive follow-up examination (ie, diagnostic dose CT, positron emission tomography–CT, or tissue sampling vs low-dose CT) within 15 months (Lung-RADS score, 1 or 2), 9 months (Lung-RADS score, 3), 5 months (Lung-RADS score, 4A), or 3 months (Lung-RADS score, 4B/X). Multivariable logistic regression was used to identify factors associated with patient nonadherence to baseline Lung-RADS recommendations. A generalized estimating equations model was used to assess whether the pattern of longitudinal Lung-RADS scores was associated with patient nonadherence over time. ResultsAmong 1979 included patients, 1111 (56.1%) were aged 65 years or older at baseline screening (mean [SD] age, 65.3 [6.6] years), and 1176 (59.4%) were male. The odds of being nonadherent were lower among patients with a baseline Lung-RADS score of 1 or 2 vs 3 (adjusted odds ratio [AOR], 0.35; 95% CI, 0.25-0.50), 4A (AOR, 0.21; 95% CI, 0.13-0.33), or 4B/X, (AOR, 0.10; 95% CI, 0.05-0.19); with a postgraduate vs college degree (AOR, 0.70; 95% CI, 0.53-0.92); with a family history of lung cancer vs no family history (AOR, 0.74; 95% CI, 0.59-0.93); with a high age-adjusted Charlson Comorbidity Index score (≥4) vs a low score (0 or 1) (AOR, 0.67; 95% CI, 0.46-0.98); in the high vs low income category (AOR, 0.79; 95% CI, 0.65-0.98); and referred by physicians from pulmonary or thoracic-related departments vs another department (AOR, 0.56; 95% CI, 0.44-0.73). Among 830 eligible patients who had completed at least 2 screening examinations, the adjusted odds of being nonadherent to Lung-RADS recommendations at the following screening were increased in patients with consecutive Lung-RADS scores of 1 to 2 (AOR, 1.38; 95% CI, 1.12-1.69). Conclusions and RelevanceIn this retrospective cohort study, patients with consecutive negative lung cancer screening results were more likely to be nonadherent with follow-up recommendations. These individuals are potential candidates for tailored outreach to improve adherence to recommended annual lung cancer screening. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1722516
- PAR ID:
- 10481693
- Publisher / Repository:
- JAMA Network
- Date Published:
- Journal Name:
- JAMA Network Open
- Volume:
- 6
- Issue:
- 5
- ISSN:
- 2574-3805
- Page Range / eLocation ID:
- e2315250
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Cardiac rehabilitation (CR) is a medically supervised program designed to improve heart health after a cardiac event. Despite its demonstrated clinical benefits, CR participation among eligible patients remains poor due to low referral rates and individual barriers to care. To evaluate CR participation by patients who receive care from hospital-integrated physicians compared with independent physicians, and subsequently, to examine CR and recurrent cardiac hospitalizations. This retrospective cohort study evaluated Medicare Part A and Part B claims data from calendar years 2016 to 2019. All analyses were conducted between January 1 and April 30, 2024. Patients were included if they had a qualifying event for CR between 2017 and 2018, and qualifying events were identified using diagnosis codes on inpatient claims and procedure codes on outpatient and carrier claims. Eligible patients also had to continuously enroll in fee-for-service Medicare for 12 months or more before and after the index event. Physicians’ integration status and patients’ CR participation were determined during the 12-month follow-up period. The study covariates were ascertained during the 12 months before the index event. ExposureHospital-integration status of the treating physician during follow-up. Main Outcomes and MeasuresPostindex CR participation was determined by qualifying procedure codes on outpatient and carrier claims. ResultsThe study consisted of 28 596 Medicare patients eligible for CR. Their mean (SD) age was 74.0 (9.6) years; 16 839 (58.9%) were male. A total of 9037 patients (31.6%) were treated by a hospital-integrated physician, of which 2995 (33.1%) received CR during follow-up. Logistic regression via propensity score weighting showed that having a hospital-integrated physician was associated with an 11% increase in the odds of receiving CR (odds ratio [OR], 1.11; 95% CI, 1.05-1.18). Additionally, CR participation was associated with a 14% decrease in the odds of recurrent cardiovascular-related hospitalizations (OR, 0.86; 95% CI, 0.81-0.91). The findings of this cohort study suggest that hospital integration has the potential to facilitate greater CR participation and improve heart care. Several factors may help explain this positive association, including enhanced care coordination and value-based payment policies. Further research is needed to assess the association of integration with other appropriate high-quality care activities.more » « less
- 
            ImportancePersistence of COVID-19 symptoms beyond 2 months, or long COVID, is increasingly recognized as a common sequela of acute infection. ObjectivesTo estimate the prevalence of and sociodemographic factors associated with long COVID and to identify whether the predominant variant at the time of infection and prior vaccination status are associated with differential risk. Design, Setting, and ParticipantsThis cross-sectional study comprised 8 waves of a nonprobability internet survey conducted between February 5, 2021, and July 6, 2022, among individuals aged 18 years or older, inclusive of all 50 states and the District of Columbia. Main Outcomes and MeasuresLong COVID, defined as reporting continued COVID-19 symptoms beyond 2 months after the initial month of symptoms, among individuals with self-reported positive results of a polymerase chain reaction test or antigen test. ResultsThe 16 091 survey respondents reporting test-confirmed COVID-19 illness at least 2 months prior had a mean age of 40.5 (15.2) years; 10 075 (62.6%) were women, and 6016 (37.4%) were men; 817 (5.1%) were Asian, 1826 (11.3%) were Black, 1546 (9.6%) were Hispanic, and 11 425 (71.0%) were White. From this cohort, 2359 individuals (14.7%) reported continued COVID-19 symptoms more than 2 months after acute illness. Reweighted to reflect national sociodemographic distributions, these individuals represented 13.9% of those who had tested positive for COVID-19, or 1.7% of US adults. In logistic regression models, older age per decade above 40 years (adjusted odds ratio [OR], 1.15; 95% CI, 1.12-1.19) and female gender (adjusted OR, 1.91; 95% CI, 1.73-2.13) were associated with greater risk of persistence of long COVID; individuals with a graduate education vs high school or less (adjusted OR, 0.67; 95% CI, 0.56-0.79) and urban vs rural residence (adjusted OR, 0.74; 95% CI, 0.64-0.86) were less likely to report persistence of long COVID. Compared with ancestral COVID-19, infection during periods when the Epsilon variant (OR, 0.81; 95% CI, 0.69-0.95) or the Omicron variant (OR, 0.77; 95% CI, 0.64-0.92) predominated in the US was associated with diminished likelihood of long COVID. Completion of the primary vaccine series prior to acute illness was associated with diminished risk for long COVID (OR, 0.72; 95% CI, 0.60-0.86). Conclusions and RelevanceThis study suggests that long COVID is prevalent and associated with female gender and older age, while risk may be diminished by completion of primary vaccination series prior to infection.more » « less
- 
            BackgroundRisk-based screening for lung cancer is currently being considered in several countries; however, the optimal approach to determine eligibility remains unclear. Ensemble machine learning could support the development of highly parsimonious prediction models that maintain the performance of more complex models while maximising simplicity and generalisability, supporting the widespread adoption of personalised screening. In this work, we aimed to develop and validate ensemble machine learning models to determine eligibility for risk-based lung cancer screening. Methods and findingsFor model development, we used data from 216,714 ever-smokers recruited between 2006 and 2010 to the UK Biobank prospective cohort and 26,616 high-risk ever-smokers recruited between 2002 and 2004 to the control arm of the US National Lung Screening (NLST) randomised controlled trial. The NLST trial randomised high-risk smokers from 33 US centres with at least a 30 pack-year smoking history and fewer than 15 quit-years to annual CT or chest radiography screening for lung cancer. We externally validated our models among 49,593 participants in the chest radiography arm and all 80,659 ever-smoking participants in the US Prostate, Lung, Colorectal and Ovarian (PLCO) Screening Trial. The PLCO trial, recruiting from 1993 to 2001, analysed the impact of chest radiography or no chest radiography for lung cancer screening. We primarily validated in the PLCO chest radiography arm such that we could benchmark against comparator models developed within the PLCO control arm. Models were developed to predict the risk of 2 outcomes within 5 years from baseline: diagnosis of lung cancer and death from lung cancer. We assessed model discrimination (area under the receiver operating curve, AUC), calibration (calibration curves and expected/observed ratio), overall performance (Brier scores), and net benefit with decision curve analysis.Models predicting lung cancer death (UCL-D) and incidence (UCL-I) using 3 variables—age, smoking duration, and pack-years—achieved or exceeded parity in discrimination, overall performance, and net benefit with comparators currently in use, despite requiring only one-quarter of the predictors. In external validation in the PLCO trial, UCL-D had an AUC of 0.803 (95% CI: 0.783, 0.824) and was well calibrated with an expected/observed (E/O) ratio of 1.05 (95% CI: 0.95, 1.19). UCL-I had an AUC of 0.787 (95% CI: 0.771, 0.802), an E/O ratio of 1.0 (95% CI: 0.92, 1.07). The sensitivity of UCL-D was 85.5% and UCL-I was 83.9%, at 5-year risk thresholds of 0.68% and 1.17%, respectively, 7.9% and 6.2% higher than the USPSTF-2021 criteria at the same specificity. The main limitation of this study is that the models have not been validated outside of UK and US cohorts. ConclusionsWe present parsimonious ensemble machine learning models to predict the risk of lung cancer in ever-smokers, demonstrating a novel approach that could simplify the implementation of risk-based lung cancer screening in multiple settings.more » « less
- 
            Objective:The COVID-19 pandemic has put unprecedented stress on essential workers and their children. Limited cross-sectional research has found increases in mental health conditions from workload, reduced income, and isolation among essential workers. Less research has been conducted on children of essential workers. We examined trends in the crisis response of essential workers and their children from April 2020 through August 2021. Methods:We investigated the impact during 3 periods of the pandemic on workers and their children using anonymized data from the Crisis Text Line on crisis help-seeking texts for thoughts of suicide or active suicidal ideation (desire, intent, capability, time frame), abuse (emotional, physical, sexual, unspecified), anxiety/stress, grief, depression, isolation, bullying, eating or body image, gender/sexual identity, self-harm, and substance use. We used generalized estimating equations to study the longitudinal change in crisis response across the later stages of the pandemic using adjusted odds ratios (aORs) for worker status and crisis outcomes. Results:Results demonstrated higher odds of crisis outcomes for thoughts of suicide (aOR = 1.06; 95% CI, 1.00-1.12) and suicide capability (aOR = 1.14; 95% CI, 1.02-1.27) among essential workers than among nonessential workers. Children of essential workers had higher odds of substance use than children of nonessential workers (aOR = 1.33; 95% CI, 1.08-1.65), particularly for Indigenous American children (aOR = 2.76; 95% CI, 1.35-5.36). Essential workers (aOR = 1.17; 95% CI, 1.07-1.27) and their children (aOR = 1.18; 95% CI, 1.07-1.30) had higher odds of grief than nonessential workers and their children. Conclusion:Essential workers and their children had elevated crisis outcomes. Immediate and low-cost psychologically supportive interventions are needed to mitigate the mental health impacts of the COVID-19 pandemic on these populations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    