Animal cytoplasmic fatty acid synthase (FAS) represents a unique family of enzymes that are classically thought to be most closely related to fungal polyketide synthase (PKS). Recently, a widespread family of animal lipid metabolic enzymes has been described that bridges the gap between these two ubiquitous and important enzyme classes: the animal FAS–like PKSs (AFPKs). Although very similar in sequence to FAS enzymes that produce saturated lipids widely found in animals, AFPKs instead produce structurally diverse compounds that resemble bioactive polyketides. Little is known about the factors that bridge lipid and polyketide synthesis in the animals. Here, we describe the function of EcPKS2 fromElysia chlorotica, which synthesizes a complex polypropionate natural product found in this mollusc. EcPKS2 starter unit promiscuity potentially explains the high diversity of polyketides found in and among molluscan species. Biochemical comparison of EcPKS2 with the previously described EcPKS1 reveals molecular principles governing substrate selectivity that should apply to related enzymes encoded within the genomes of photosynthetic gastropods. Hybridization experiments combining EcPKS1 and EcPKS2 demonstrate the interactions between the ketoreductase and ketosynthase domains in governing the product outcomes. Overall, these findings enable an understanding of the molecular principles of structural diversity underlying the many molluscan polyketides likely produced by the diverse AFPK enzyme family.
more »
« less
Precursor-Directed Biosynthesis of Aminofulvenes: New Chalanilines from Endophytic Fungus Chalara sp.
The plant endophyte Chalara sp. is able to biotransform the epigenetic modifier vorinostat to form unique, aniline-containing polyketides named chalanilines. Here, we sought to expand the chemical diversity of chalaniline A-type molecules by changing the aniline moiety in the precursor vorinostat. In total, twenty-three different vorinostat analogs were prepared via two-step synthesis, and nineteen were incorporated by the fungus into polyketides. The highest yielding substrates were selected for large-scale precursor-directed biosynthesis and five novel compounds, including two fluorinated chalanilines, were isolated, purified, and structurally characterized. Structure elucidation relied on 1D and 2D NMR techniques and was supported by low- and high-resolution mass spectrometry. All compounds were tested for their bioactivity but were not active in antimicrobial or cell viability assays. Aminofulvene-containing natural products are rare, and this high-yielding, precursor-directed process allows for the diversification of this class of compounds.
more »
« less
- Award ID(s):
- 2020110
- PAR ID:
- 10335232
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 26
- Issue:
- 15
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 4418
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cyclophanes are an admirable class of macrocyclic and cage compounds that often display unusual properties due to their high strain and unusual conformations. However, the exploration of new, complex cyclophanes has been encumbered by syntheses that can be low yielding, require harsh reaction conditions, and arduous purification steps. Herein, we discuss our work using metalloid-directed self-assembly and dynamic covalent chemistry to form cryptands. These were then subjected to mild conditions to produce discrete disulfide, thioether and hydrocarbon macrocycles in high yields. ‘Design of Experiments’ was then used to selectively synthesize targeted macrocycles from complex mixtures. 1 Introduction 2 Cryptands to Cyclophanes 3 Functionalizable Macrocycles 4 ‘Design of Experiments’ Targeted Synthesis 5 Conclusions and Outlookmore » « less
-
Abstract Cyclophanes are a fundamentally interesting class of compounds that host a wide range of unique and emergent properties. However, synthesis of complex and/or functionalized cyclophanes can often suffer from harsh reaction conditions, long reaction times, and sometimes low yields using stepwise methods. We have previously reported an efficient, high‐yielding, metalloid‐directed self‐assembly method to prepare disulfide, thioether, and hydrocarbon cyclophanes and cages that feature mercaptomethyl‐arenes as starting materials. Herein, we report the synthesis of 21 new disulfide and thioether assemblies that expand this high yielding self‐assembly method to a wide breadth of macrocycles and cages with diverse structures. Remarkably, the high‐yielding, efficient syntheses still proceed under dynamic covalent control using electron‐deficient, heteroaryl, cycloalkyl, spiro, and even short alkenyl/alkynyl substrates.more » « less
-
Ionic liquids are an interesting class of materials that have recently been utilized as chemotherapeutic agents in cancer therapy. Aniline blue, a commonly used biological staining agent, was used as a counter ion to trihexyltetradecylphosphonium, a known cytotoxic cation. A facile, single step ion exchange reaction was performed to synthesize a fluorescent ionic liquid, trihexyltetradecylphosphonium aniline blue. Aqueous nanoparticles of this hydrophobic ionic liquid were prepared using reprecipitationmethod. The newly synthesized ionic liquid and subsequent nanoparticles were characterized using various spectroscopic techniques. Transmission electron microscopy and zeta potential measurements were performed to characterize the nanoparticles’ morphology and surface charge. The photophysical properties of the nanoparticles and the parent aniline blue compound were studied using absorption and fluorescence spectroscopy. Cell viability studies were conducted to investigate the cytotoxicity of the newly developed trihexyltetradecylphosphonium aniline blue nanoparticles in human breast epithelial cancer cell line (MCF-7) and its corresponding normal epithelial cell line (MCF-10A) in vitro . The results revealed that the synthesized ionic nanomedicines were more cytotoxic (lower IC 50 ) than the parent chemotherapeutic compound in MCF-7 cells. Nanoparticles of the synthesized ionic liquid were also shown to be more stable in both aqueous and cellular media and more selective than parent compounds towards cancer cells.more » « less
-
Over a hundred non-canonical nucleotides have been found in DNA and RNA. Many of them are sensitive toward nucleophiles. Because known oligonucleotide synthesis technologies require nucleophilic conditions for deprotection, currently there is no suitable technology for their synthesis. The recently disclosed method regarding the use of 1,3-dithian-2-yl-methyl (Dim) for phosphate protection and 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) for amino protection can solve the problem. With Dim–Dmoc protection, oligodeoxynucleotide (ODN) deprotection can be achieved with NaIO 4 followed by aniline. Some sensitive groups have been determined to be stable under these conditions. Besides serving as a base, aniline also serves as a nucleophilic scavenger, which prevents deprotection side products from reacting with ODN. For this reason, excess aniline is needed. Here, we report the use of alkyl Dim (aDim) and alkyl Dmoc (aDmoc) for ODN synthesis. With aDim–aDmoc protection, deprotection is achieved with NaIO 4 followed by K 2 CO 3 . No nucleophilic scavenger such as aniline is needed. Over 10 ODNs including one containing the highly sensitive N 4 -acetylcytidine were synthesized. Work on extending the method for sensitive RNA synthesis is in progress.more » « less
An official website of the United States government

