Recently, graphene fibers derived from wet-spinning of graphene oxide (GO) dispersions have emerged as viable electrodes for fiber-shaped supercapacitors (FSCs) and/or batteries, wherein large surface area, high electrical conductivity, and sufficient mechanical strength/toughness are desired. However, for most fiber electrodes reported so far, compromises have to be made between energy-storage capacity and mechanical/electrical performance, whereas a graphene fiber with high capacity and sufficient toughness for direct machine weaving or knitting is yet to be developed. Inspired by the alum mordant used for natural dyes in the traditional textile dyeing industry, our research group has synthesized wet-spun GO fibers and coagulated them with different multivalent cations ( e.g. Ca 2+ , Fe 3+ , and Al 3+ ), where dramatically different fiber morphologies and properties have been observed. The first principles density functional theory has been further employed to explain the observed disparities via cation–GO binding energy calculation. When assembled into solid-state FSCs, Al 3+ -based reduced GO (rGO) fibers offer excellent stability against bending, and a specific capacitance of 148.5 mF cm −2 at 40 mV s −1 , 1.4, 4.8, and 6.8 times higher than that of the rGO fibers based on other three coagulation systems (Fe 3+ , Ca 2+ and acetic acid), respectively. The volumetric energy density of the Al 3+ -based FSC is up to 13.26 mW h cm −3 , while a high power density of 250.87 mW cm −3 is maintained.
more »
« less
Boron nitride nanotubes enhance mechanical properties of fibers from nanotube/polyvinyl alcohol dispersions
Effectively translating the promising properties of boron nitride nanotubes (BNNTs) into macroscopic assemblies has vast potential for applications, such as thermal management materials and protective fabrics against hazardous environment. We spun fibers from aqueous dispersions of BNNTs in polyvinyl alcohol (PVA) solutions by a wet spinning method. Our results demonstrate that BNNTs/PVA fibers exhibit enhanced mechanical properties, which are affected by the nanotube and PVA concentrations, and the coagulation solvent utilized. Compared to the neat PVA fibers, we obtained roughly 4.3-, 12.7-, and 1.5-fold increases in the tensile strength, Young's modulus, and toughness, respectively, for the highest performing BNNTs/PVA fibers produced from dispersions containing as low as 0.1 mass% of nanotube concentration. Among the coagulation solvents tested, we found that solvents with higher polarity such as methanol and ethanol generally produced fibers with improved mechanical properties, where the fiber toughness shows a strong correlation with solvent polarity. These findings provide insights into assembling BNNTs-based fibers with improved mechanical properties for developing unique applications.
more »
« less
- Award ID(s):
- 2118416
- PAR ID:
- 10335249
- Date Published:
- Journal Name:
- Nanoscale Advances
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2516-0230
- Page Range / eLocation ID:
- 77 to 86
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Boron nitride nanotubes (BNNTs) belong to a novel class of material with useful thermal, electronic and optical properties. However, the study and the development of applications of this material requires the formation of stable dispersions of individual BNNTs in water. Here we address the dispersion of BNNT material in water using surfactants with varying properties. The surfactants were compared based on the quantity of BNNTs dispersed and the quality of the dispersions, as visualized by AFM and cryo-TEM. All surfactants produce dispersions of individualized or small bundles of BNNTs. Of the surfactants tested, high molecular weight, nonionic surfactants suspend the most BNNTs, while ionic surfactants remove the most h-BN impurities. The surfactant dispersions were further characterized by ensemble measurements, such as UV absorption and photoluminescence, dynamic light scattering (DLS), and zeta potential to investigate dispersion stability and quality. These techniques provide a facile strategy for testing future BNNT dispersions. The results of this study reveal that BNNT dispersions in aqueous solution can be tuned to fit a specific application through surfactant selection.more » « less
-
In recent years, nanocellulose has emerged as a sustainable and environmentally friendly alternative to traditional petroleum-derived structural polymers. Sourced either from plants, algae, or bacteria, nanocellulose can be processed into colloid, gel, film and fiber forms. However, the required fundamental understanding of process parameters that govern the morphology and structure–property relationships of nanocellulose systems, from colloidal suspensions to bulk materials, has not been developed and generalized for all forms of cellulose. This further hinders the more widespread adoption of this biopolymer in applications. Our study investigates the dispersion of cellulose nanofibers (CNFs) produced by a bacterial–yeast co-culture, in solvents, highlighting the role of thermodynamic interactions in influencing their colloidal behavior. By adjusting Hansen solubility parameters, we controlled the thermodynamic relationship between CNFs and solvents across various concentrations, studying the dilute to semi-dilute regimes. Rheological measurements revealed that the threshold at which a concentration-based regime transition occurs is distinctly solvent-dependent. Complementing rheological analysis with small angle X-ray scattering and zeta potential measurements, our findings reveal that enhancing CNF–solvent interactions increases excluded volume in the dilute regime, emphasizing the importance of the balance between fiber–fiber and fiber–solvent interactions. Moreover, we investigated the transition from colloidal to solid state by creating films from dispersions with varying interaction parameters in semi-dilute regimes. Through mechanical testing and scanning electron microscopy imaging of the fracture surfaces, we highlight the significance of electrokinetic effects in such transitions, as dispersions with higher electrokinetic stabilization gave rise to stronger and tougher films despite having less favorable thermodynamic interaction parameters. Our work provides insights into the thermodynamic and electrokinetic interplay that governs bacterial CNF dispersion, offering a foundation for future application and a deeper understanding of nanocellulose's colloidal and structure-property relationships.more » « less
-
Abstract Non‐biodegradable petroleum‐based plastic wastes have become a leading environmental concern, and new efforts are underway to prepare biobased and biodegradable replacements. We have explored the preparation of adhesives suitable for use in consumer products, and here we report the development of waterborne, biodegradable adhesives from biobased monomers resulting in adhesives exceeding 70% biocontent. Using water as the polymer medium, viscosity challenges and the use of volatile organic solvents are avoided. Material properties of the polyurethane dispersions, resulting films, and laminates produced showed Mwranging between 56,000 and 124,000. Lastly, the biodegradability of films and laminates was evaluated. The resulting metrics indicate that the adhesives produced meet the desired mechanical and biodegradability targets, indicating that high renewability content solvent‐free polyurethane dispersions are a viable solution for lamination adhesives.more » « less
-
Cellulose-based conductive composite fibers hold great promise in smart wearable applications, given cellulose's desirable properties for textiles. Blending conductive fillers with cellulose is the most common means of fiber production. Incorporating a high content of conductive fillers is demanded to achieve desirable conductivity. However, a high filler load deteriorates the processability and mechanical properties of the fibers. Here, developing wet-spun cellulose-based fibers with a unique side-by-side (SBS) structure via sustainable processing is reported. Sustainable sources (cotton linter and post-consumer cotton waste) and a biocompatible intrinsically conductive polymer (i.e., polyaniline, PANI) were engineered into fibers containing two co-continuous phases arranged side-by-side. One phase was neat cellulose serving as the substrate and providing good mechanical properties; another phase was a PANI-rich cellulose blend (50 wt%) affording electrical conductivity. Additionally, an eco-friendly LiOH/urea solvent system was adopted for the fiber spinning process. With the proper control of processing parameters, the SBS fibers demonstrated high conductivity and improved mechanical properties compared to single-phase cellulose and PANI blended fibers. The SBS fibers demonstrated great potential for wearable e-textile applications.more » « less
An official website of the United States government

