Multi-channel data acquisition of bio-signals is a promising technology that is being used in many fields these days. Compressed sensing (CS) is an innovative approach of signal processing that facilitates sub-Nyquist processing of bio-signals, such as an electrocardiogram (ECG) and electroencephalogram (EEG). This strategy can be used to lower the data rate to realize ultra-low-power performance, As the count of recording channels increase, data volume is increased resulting in impermissible transmitting power. This paper presents the implementation of a CMOS-based front-end design with the CS in the standard 180 nm CMOS process. A novel pseudo-random sequence generator is proposed, whichmore »
End-to-End Optimized Adversarial Deep Compressed Super-Resolution Imaging via Pattern Scanning
We propose an end-to-end optimized adversarial deep compressed imaging modality. This method exploits the adversarial duality of the sensing basis and sparse representation basis in compressed sensing framework and shows solid super-resolution results.
- Award ID(s):
- 1847141
- Publication Date:
- NSF-PAR ID:
- 10335272
- Journal Name:
- OSA Imaging and Applied Optics Congress 2021 (3D, COSI, DH, ISA, pcAOP)
- Page Range or eLocation-ID:
- CM2E.6
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Glow discharge optical emission spectroscopy elemental mapping (GDOES EM), enabled by spectral imaging strategies, is an advantageous technique for direct multi-elemental analysis of solid samples in rapid timeframes. Here, a single-pixel, or point scan, spectral imaging system based on compressed sensing image sampling, is developed and optimized in terms of matrix density, compression factor, sparsifying basis, and reconstruction algorithm for coupling with GDOES EM. It is shown that a 512 matrix density at a compression factor of 30% provides the highest spatial fidelity in terms of the peak signal-to-noise ratio (PSNR) and complex wavelet structural similarity index measure (cw-SSIM) whilemore »
-
Recent advances in machine learning, especially techniques such as deep neural networks, are enabling a range of emerging applications. One such example is autonomous driving, which often relies on deep learning for perception. However, deep learning-based perception has been shown to be vulnerable to a host of subtle adversarial manipulations of images. Nevertheless, the vast majority of such demonstrations focus on perception that is disembodied from end-to-end control. We present novel end-to-end attacks on autonomous driving in simulation, using simple physically realizable attacks: the painting of black lines on the road. These attacks target deep neural network models for endto-endmore »
-
End-to-end data-driven image compressive sensing reconstruction (EDCSR) frameworks achieve state-of-the-art reconstruction performance in terms of reconstruction speed and accuracy. However, due to their end-to-end nature, existing EDCSR frameworks can not adapt to a variable compression ratio (CR). For applications that desire a variable CR, existing EDCSR frameworks must be trained from scratch at each CR, which is computationally costly and time-consuming. This paper presents a generic compression ratio adapter (CRA) framework that addresses the variable compression ratio (CR) problem for existing EDCSR frameworks with no modification to given reconstruction models nor enormous rounds of training needed. CRA exploits an initialmore »
-
Compressed sensing (CS) as a new data acquisition technique has been applied to monitor manufacturing processes. With a few measurements, sparse coefficient vectors can be recovered by solving an inverse problem and original signals can be reconstructed. Dictionary learning methods have been developed and applied in combination with CS to improve the sparsity level of the recovered coefficient vectors. In this work, a physics-constrained dictionary learning approach is proposed to solve both of reconstruction and classification problems by optimizing measurement, basis, and classification matrices simultaneously with the considerations of the application-specific restrictions. It is applied in image acquisitions in selectivemore »