Abstract Structural DNA nanotechnology enables the self‐organization of matter at the nanometer scale, but approaches to expand the inorganic and electrical functionality of these scaffolds remain limited. Developments in nucleic acid metallics have enabled the incorporation of site‐specific metal ions in DNA duplexes and provide a means of functionalizing the double helix with atomistic precision. Here a class of 2D DNA nanostructures that incorporate the cytosine‐Ag+‐cytosine (dC:Ag+:dC) base pair as a chemical trigger for self‐assembly is described. It is demonstrated that Ag+‐functionalized DNA can undergo programmable assembly into large arrays and rings, and can be further coassembled with guanine tetraplexes (G4). It is shown that 2D DNA lattices can be assembled with a variety of embedded nanowires at tunable spacing. These results serve as a foundation for further development of self‐assembled, metalated DNA nanostructures, with potential for high‐precision DNA nanoelectronics with nanometer pitch.
more »
« less
Tug-of-War between DNA Chelation and Silver Agglomeration in DNA–Silver Cluster Chromophores
More Like this
-
-
null (Ed.)DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure–property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.more » « less
An official website of the United States government

