skip to main content


Search for: All records

Award ID contains: 2002910

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. DNA strands are polymeric ligands that both protect and tune molecular-sized silver cluster chromophores. We studied single-stranded DNA C4AC4TC3XT4 with X = guanosine and inosine that form a green fluorescent Ag106+ cluster, but these two hosts are distinguished by their binding sites and the brightness of their Ag106+ adducts. The nucleobase subunits in these oligomers collectively coordinate this cluster, and fs time-resolved infrared spectra previously identified one point of contact between the C2–NH2 of the X = guanosine, an interaction that is precluded for inosine. Furthermore, this single nucleobase controls the cluster fluorescence as the X = guanosine complex is ∼2.5× dimmer. We discuss the electronic relaxation in these two complexes using transient absorption spectroscopy in the time window 200 fs–400 µs. Three prominent features emerged: a ground state bleach, an excited state absorption, and a stimulated emission. Stimulated emission at the earliest delay time (200 fs) suggests that the emissive state is populated promptly following photoexcitation. Concurrently, the excited state decays and the ground state recovers, and these changes are ∼2× faster for the X = guanosine compared to the X = inosine cluster, paralleling their brightness difference. In contrast to similar radiative decay rates, the nonradiative decay rate is 7× higher with the X = guanosine vs inosine strand. A minor decay channel via a dark state is discussed. The possible correlation between the nonradiative decay and selective coordination with the X = guanosine/inosine suggests that specific nucleobase subunits within a DNA strand can modulate cluster–ligand interactions and, in turn, cluster brightness. 
    more » « less
  2. Molecular silver clusters emit across the visible to near-infrared, and specific chromophores can be formed using DNA strands. We study C4AC4TC3G that selectively coordinates and encapsulates Ag106+, and this chromophore has two distinct electronic transitions. The green emission is strong and prompt with ϕ = 18% and τ = 1.25 ns, and the near-infrared luminescence is weaker, slower with τ = 50 µs, and is partly quenched by oxygen, suggesting phosphorescence. This lifetime can be modulated by the DNA host, and we consider two derivatives of C4AC4TC3G with similar sequences but distinct structures. In one variant, thymine was excised to create an abasic gap in an otherwise intact strand. In the other, the covalent phosphate linkage was removed to split the DNA scaffold into two fragments. In relation to the contiguous strands, the broken template speeds the luminescence decay by twofold, and this difference may be due to greater DNA flexibility. These modifications suggest that a DNA can be structurally tuned to modulate metastable electronic states in its silver cluster adducts. 
    more » « less
  3. DNA-templated silver clusters are chromophores in which the nucleobases encode the cluster spectra and brightness. We describe the coordination environments of two nearly identical Ag106+ clusters that form with 18-nucleotide strands CCCCA CCCCT CCCX TTTT, with X = guanosine and inosine. For the first time, femtosecond time-resolved infrared (TRIR) spectroscopy with visible excitation and mid-infrared probing is used to correlate the response of nucleobase vibrational modes to electronic excitation of the metal cluster. A rich pattern of transient TRIR peaks in the 1400–1720 cm–1 range decays synchronously with the visible emission. Specific infrared signatures associated with the single guanosine/inosine along with a subset of cytidines, but not the thymidines, are observed. These fingerprints suggest that the network of bonds between a silver cluster adduct and its polydentate DNA ligands can be deciphered to rationally tune the coordination and thus spectra of molecular silver chromophores. 
    more » « less