skip to main content


Title: Porous hydrophobic-hydrophilic Janus membranes for nondispersive membrane solvent extraction
Porous membranes having a particular wetting characteristic, hydrophobic or hydrophilic, are used for nondispersive membrane solvent extraction (MSX) where two immiscible phases flow on two sides of the membrane. The aqueous-organic phase interface across which solvent extraction/back extraction occurs remains immobilized on one surface of the membrane. This process requires the pressure of the phase not present in membrane pores to be either equal to or higher than that of the phase present in membrane pores; the excess phase pressure should not exceed a breakthrough pressure. In countercurrent MSX with significant flow pressure drop in each phase, this often poses a problem. To overcome this problem, flat porous Janus membranes were developed using either a base polypropylene (PP) or polyvinylidene fluoride (PVDF) or polyamide (Nylon) membrane, one side of which is hydrophobic and the other being hydrophilic. Such membranes were characterized using the contact angle, liquid entry pressure (LEP) and the droplet breakthrough pressure from each side of the membrane along with characterizations via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR). Nondispersive solvent extractions were carried out successfully for two systems, octanol-phenol (solute)-water, toluene-acetone (solute)-water, with either flowing phase at a pressure higher than that of the other phase. The phenol extraction system had a high solute distribution coefficient whereas acetone prefers both phases almost identically. The potential practical utility of the MSX technique will be substantially enhanced via Janus MSX membranes.  more » « less
Award ID(s):
1822130
NSF-PAR ID:
10335289
Author(s) / Creator(s):
Editor(s):
Nghiem, Long
Date Published:
Journal Name:
Journal of membrane science
Volume:
637
ISSN:
0376-7388
Page Range / eLocation ID:
119633
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Polymeric membranes for separation of pharmaceutical intermediates/products by organic solvent nanofiltration (OSN) have to be highly resistant to many organic solvents including high-boiling polar aprotic ones, e.g., N- methyl-2-pyrollidone (NMP), dimethylsulfoxide (DMSO), dimethylformamide (DMF). Unless cross-linked, few polymers resist swelling or dissolution in such solvents; however particular perfluoropolymers are resistant to almost all solvents except perfluorosolvents. One such polymer, designated AHP1, a glassy amorphous hydrophobic perfluorinated polymer, has been studied here. Additional perfluoropolymers studied here are hydrophilically modified (HMP2 and HMP3) versions to enhance the flux of polar aprotic solvents. OSN performances of three types of membranes including the hydrophilically modified ones were studied via solvent flux and solute rejection at pressures up to 5000 kPa. The solutes were four active pharmaceutical ingredients (APIs) or pharmaceutical intermediates having molecular weights (MWs) between 432 and 809 Da and three dyes, Oil Blue N (378 Da), Sudan Black B (456 Da), Brilliant Blue R (826 Da). Solvents used were: ethyl acetate, toluene, n- heptane, iso-octane, DMSO, tetrahydrofuran (THF), DMF, acetone, NMP, methanol. Test cells included stirred cells and tangential flow cells. Pure solvent fluxes through three membrane types were characterized using a particular parameter employing various solvent properties. All three membranes achieved high solute rejections around 91–98% at ambient temperatures. HMP2 membrane achieved 95% solute rejection for an API (809 Da) in DMSO at a high temperature, 75 ◦C. A two-stage simulated nanofiltration process achieved 99%+ rejection of a pharmaceutical intermediate (MW, 432 Da) in 75v% NMP-25v% ethyl acetate solution. 
    more » « less
  2. Abstract

    Nonwoven super‐hydrophobic fiber membranes have potential applications in oil–water separation and membrane distillation, but fouling negatively impacts both applications. Membranes were prepared from blends comprising poly(vinylidene fluoride) (PVDF) and random zwitterionic copolymers of poly(methyl methacrylate) (PMMA) with sulfobetaine methacrylate (SBMA) or with sulfobetaine‐2‐vinylpyridine (SB2VP). PVDF imparts mechanical strength to the membrane, while the copolymers enhance fouling resistance. Blend composition was varied by controlling the PVDF‐to‐copolymer ratio. Nonwoven fiber membranes were obtained by electrospinning solutions of PVDF and the copolymers in a mixed solvent ofN,N‐dimethylacetamide and acetone. The PVDF crystal phases and crystallinities of the blends were studied using wide‐angle X‐ray diffraction and differential scanning calorimetry (DSC). PVDF crystallized preferentially into its polarβ‐phase, though its degree of crystallinity was reduced with increased addition of the random copolymers. Thermogravimetry (TG) showed that the degradation temperatures varied systematically with blend composition. PVDF blends with either copolymer showed significant increase of fouling resistance. Membranes prepared from blends containing 10% P(MMA‐ran‐SB2VP) had the highest fouling resistance, with a fivefold decrease in protein adsorption on the surface, compared to homopolymer PVDF. They also exhibited higher pure water flux, and better oil removal in oil–water separation experiments. © 2018 Society of Chemical Industry

     
    more » « less
  3. null (Ed.)
    Initiated chemical vapor deposition (iCVD) was used to coat two porous substrates (i.e., hydrophilic cellulose acetate (CA) and hydrophobic polytetrafluoroethylene (PTFE)) with a crosslinked fluoropolymer to improve membrane wetting resistance. The coated CA membrane was superhydrophobic and symmetric. The coated PTFE membrane was hydrophobic and asymmetric, with smaller pore size and lower porosity on the top surface than on the bottom surface. Membrane performance was tested in membrane distillation experiments with (1) a high-salinity feed solution and (2) a surfactant-containing feed solution. In both cases, the coated membranes had higher wetting resistance than the uncoated membranes. Notably, wetting resistances were better predicted by LEP distributions than by minimum LEP values. When LEP distributions were skewed towards high LEP values (i.e., when small pores with high LEP were greater in number), significant (measurable) salt passage did not occur. For the high-salinity feed solution, the coated PTFE membrane had greater wetting resistance than the coated CA membrane; thus, reduced surface pore size/porosity (which may reduce intrapore scaling) was more effective than increased surface hydrophobicity (which may reduce surface nucleation) in preventing scaling-induced wetting. Reduced pore size/porosity was equally as effective as increased hydrophobicity in resisting surfactant-induced wetting. However, reduced porosity can negatively impact water flux; this represents a permeability/wetting resistance tradeoff in membrane distillation – especially for high-salinity applications. Membrane and/or membrane coating properties must be optimized to overcome this permeability/wetting resistance tradeoff and make MD viable for the treatment of challenging streams. Then, increasing hydrophobicity may not be necessary to impart high wetting resistance to porous membranes. These results are important for future membrane design, especially as manufacturers seek to replace perfluorinated materials with environmentally friendly alternatives. 
    more » « less
  4. Direct contact membrane distillation (DCMD) for desalination is attractive for high salt concentrations if low cost steam/waste heat is available and waste brine disposal cost for inland desalination is factored in. A number of innovations have taken place in DCMD in terms of the structure of the porous hydrophobic membrane. Composite membranes are of increasing interest. Composite membrane structures of great interest include a thin hydrophobic porous layer over a porous hydrophilic layer of polyvinylidene fluoride (PVDF) or a thin porous hydrophobic layer over a more conventional hydrophobic porous membrane. These membranes can be in the form of an integral composite or a stacked composite or a laminated composite. A facile method of fabricating such integral composite membranes is plasma polymerization under vacuum. A class of such membranes yielding quite high water vapor fluxes have been characterized using a variety of characterization techniques: Contact angle, liquid entry pressure (LEP), bubble-point pressure, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM). Stacked composites of a hydrophobic ePTFE membrane over a hydrophilic PVDF membrane or a hydrophobic PVDF membrane over another hydrophobic PVDF membrane were also studied. Novel conditions created lead to very high water vapor fluxes compared to those from conventional hydrophobic membranes supported on a mesh support. 
    more » « less
  5. Performance of membranes for water purification is highly influenced by the interactions of solvated species with membrane surfaces, including surface adsorption of solutes upon fouling. Current efforts toward fouling-resistant membranes often pursue surface hydrophilization, frequently motivated by macroscopic measures of hydrophilicity, because hydrophobicity is thought to increase solute–surface affinity. While this heuristic has driven diverse membrane functionalization strategies, here we build on advances in the theory of hydrophobicity to critically examine the relevance of macroscopic characterizations of solute–surface affinity. Specifically, we use molecular simulations to quantify the affinities to model hydroxyl- and methyl-functionalized surfaces of small, chemically diverse, charge-neutral solutes represented in produced water. We show that surface affinities correlate poorly with two conventional measures of solute hydrophobicity, gas-phase water solubility and oil–water partitioning. Moreover, we find that all solutes show attraction to the hydrophobic surface and most to the hydrophilic one, in contrast to macroscopically based hydrophobicity heuristics. We explain these results by decomposing affinities into direct solute interaction energies (which dominate on hydroxyl surfaces) and water restructuring penalties (which dominate on methyl surfaces). Finally, we use an inverse design algorithm to show how heterogeneous surfaces, with multiple functional groups, can be patterned to manipulate solute affinity and selectivity. These findings, importantly based on a range of solute and surface chemistries, illustrate that conventional macroscopic hydrophobicity metrics can fail to predict solute–surface affinity, and that molecular-scale surface chemical patterning significantly influences affinity—suggesting design opportunities for water purification membranes and other engineered interfaces involving aqueous solute–surface interactions.

     
    more » « less