In this work, we explore the effect of neutrino nonstandard interactions (NSI) involving the charm quark at SND@LHC. Using an effective description of new physics in terms of four-fermion operators involving a charm quark, we constrain the Wilson coefficients of the effective interaction from two and three-body charmed meson decays. In our fit, we include charmed meson decays not only to pseudoscalar final states but also to vector final states and include decays to the η and η′ final states. We also consider constraints from charmed baryon decays. We then study the effect of new physics in neutrino scattering processes, involving charm production at SND@LHC, for various benchmark new physics couplings obtained from the low energy fits. Finally, we also study the effects of lepton universality violation (LUV) assuming that the new physics coupling is not lepton universal.
more »
« less
Probes of non-standard interactions from exclusive hadronic tau decays
In this talk we study the sensitivity of exclusive hadronic tau decays to non-standard interactions using the low-energy limit of the Standard Model Effective Field Theory. Employing Lattice input and dispersive form factors, along with experimental data, we analyze both one and two meson decays to set bounds on the new physics effective couplings. Our results complement the traditional low-energy probes, such as nuclear β or Kℓ3 decays, and can be improved with new data, e.g. from Belle-II.
more »
« less
- Award ID(s):
- 1714253
- PAR ID:
- 10335302
- Date Published:
- Journal Name:
- PoS CHARM2020 (2021) 044
- Page Range / eLocation ID:
- 044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> A standard model effective field theory (SMEFT) analysis with dimension-six operators probing nonresonant new physics effects is performed in the Higgs-strahlung process, where the Higgs boson is produced in association with a W or Z boson, in proton-proton collisions at a center-of-mass energy of 13 TeV. The final states in which the W or Z boson decays leptonically and the Higgs boson decays to a pair of bottom quarks are considered. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 138 fb−1. An approach designed to simultaneously optimize the sensitivity to Wilson coefficients of multiple SMEFT operators is employed. Likelihood scans as functions of the Wilson coefficients that carry SMEFT sensitivity in this final state are performed for different expansions in SMEFT. The results are consistent with the predictions of the standard model.more » « less
-
In the collider phenomenology of extensions of the Standard Model with partner particles, cascade decays occur generically, and they can be challenging to discover when the spectrum of new particles is compressed and the signal cross section is low. Achieving discovery-level significance and measuring the properties of the new particles appearing as intermediate states in the cascade decays is a longstanding problem, with analysis techniques for some decay topologies already optimized. We focus our attention on a benchmark decay topology with four final state particles where there is room for improvement, and where multidimensional analysis techniques have been shown to be effective in the past. Using machine learning techniques, we identify the optimal kinematic observables for discovery, spin determination and mass measurement. In agreement with past work, we confirm that the kinematic observable Δ4 is highly effective. We quantify the achievable accuracy for spin determination and for the precision for mass measurements as a function of the signal size.more » « less
-
A bstract Hadronic τ decays are studied as probe of new physics. We determine the dependence of several inclusive and exclusive τ observables on the Wilson coefficients of the low-energy effective theory describing charged-current interactions between light quarks and leptons. The analysis includes both strange and non-strange decay channels. The main result is the likelihood function for the Wilson coefficients in the tau sector, based on the up-to-date experimental measurements and state-of-the-art theoretical techniques. The likelihood can be readily combined with inputs from other low-energy precision observables. We discuss a combination with nuclear beta, baryon, pion, and kaon decay data. In particular, we provide a comprehensive and model-independent description of the new physics hints in the combined dataset, which are known under the name of the Cabibbo anomaly.more » « less
-
Abstract A search for low-mass dilepton resonances in Higgs boson decays is conducted in the four-lepton final state. The decay is assumed to proceed via a pair of beyond the standard model particles, or one such particle and a $${\mathrm{Z}}$$ Z boson. The search uses proton–proton collision data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ fb - 1 , at a center-of-mass energy $$\sqrt{s} = 13\,\text {TeV} $$ s = 13 TeV . No significant deviation from the standard model expectation is observed. Upper limits at 95% confidence level are set on model-independent Higgs boson decay branching fractions. Additionally, limits on dark photon and axion-like particle production, based on two specific models, are reported.more » « less
An official website of the United States government

