skip to main content


Title: Understanding ion-induced assembly of cellulose nanofibrillar gels through shear-free mixing and in situ scanning-SAXS
During the past decade, cellulose nanofibrils (CNFs) have shown tremendous potential as a building block to fabricate new advanced materials that are both biocompatible and biodegradable. The excellent mechanical properties of the individual CNF can be transferred to macroscale fibers through careful control in hydrodynamic alignment and assembly processes. The optimization of such processes relies on the understanding of nanofibril dynamics during the process, which in turn requires in situ characterization. Here, we use a shear-free mixing experiment combined with scanning small-angle X-ray scattering (scanning-SAXS) to provide time-resolved nanoscale kinetics during the in situ assembly of dispersed cellulose nanofibrils (CNFs) upon mixing with a sodium chloride solution. The addition of monovalent ions led to the transition to a volume-spanning arrested (gel) state. The transition of CNFs is associated with segmental aggregation of the particles, leading to a connected network and reduced Brownian motion, whereby an aligned structure can be preserved. Furthermore, we find that the extensional flow seems to enhance the formation of these segmental aggregates, which in turn provides a comprehensible explanation for the superior material properties obtained in shear-free processes used for spinning filaments from CNFs. This observation clearly highlights the need for different assembly strategies depending on morphology and interactions of the dispersed nanoparticles, where this work can be used as a guide for improved nanomaterial processes.  more » « less
Award ID(s):
1808690
NSF-PAR ID:
10335310
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanoscale Advances
Volume:
3
Issue:
17
ISSN:
2516-0230
Page Range / eLocation ID:
4940 to 4951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Time-resolved in situ characterization of well-defined mixing processes using small-angle X-ray scattering (SAXS) is usually challenging, especially if the process involves changes of material viscoelasticity. In specific, it can be difficult to create a continuous mixing experiment without shearing the material of interest; a desirable situation since shear flow both affects nanoscale structures and flow stability as well as resulting in unreliable time-resolved data. Here, we demonstrate a flow-focusing mixing device for in situ nanostructural characterization using scanning-SAXS. Given the interfacial tension and viscosity ratio between core and sheath fluids, the core material confined by sheath flows is completely detached from the walls and forms a zero-shear plug flow at the channel center, allowing for a trivial conversion of spatial coordinates to mixing times. With this technique, the time-resolved gel formation of dispersed cellulose nanocrystals (CNCs) was studied by mixing with a sodium chloride solution. It is observed how locally ordered regions, so called tactoids, are disrupted when the added monovalent ions affect the electrostatic interactions, which in turn leads to a loss of CNC alignment through enhanced rotary diffusion. The demonstrated flow-focusing scanning-SAXS technique can be used to unveil important kinetics during structural formation of nanocellulosic materials. However, the same technique is also applicable in many soft matter systems to provide new insights into the nanoscale dynamics during mixing. 
    more » « less
  2. The continuous flow assembly of colloidal nanoparticles from aqueous suspensions into macroscopic materials in a field-assisted double flow focusing system offers an attractive way to bridge the outstanding nanoscale characteristics of renewable cellulose nanofibrils (CNFs) at scales most common to human technologies. By incorporating single-walled carbon nanotubes (SWNTs) during the fabrication process, high-performance functional filament nanocomposites were produced. CNFs and SWNTs were first dispersed in water without any external surfactants or binding agents, and the resulting nanocolloids were aligned by means of an alternating electric field combined with extensional sheath flows. The nanoscale orientational anisotropy was then locked by a liquid−gel transition during the materials assembly into macroscopic filaments, which greatly improved their mechanical, electrical, and liquid sensing properties. Significantly, these findings pave the way toward the environmentally friendly and scalable manufacturing of a variety of multifunctional fibers for diverse applications. 
    more » « less
  3. Cellulose nanofibrils (CNFs) produced through processes involving oxidation (e.g. TEMPO oxidation) present reactive groups that allow for straightforward modification in aqueous suspension. CNFs fabricated through mechanical refinement alone can be challenging to modify for subsequent reactions due to only having hydroxyl groups present on the surface. To address these issues, CNFs with only hydroxyl groups present were functionalized with norbornene groups in their native aqueous suspension to achieve up to 10% functionalization per anhydroglucose unit. Since quantification of surface functionalizationof CNFs is challenging through most methods, a degradation and subsequent nuclear magnetic resonance analysis method was developed to quantify norbornene functionalization. The norbornene functionalized CNFs (nCNFs) were crosslinked through UV and thermally initiated thiol-eneclick reactions to create robust CNF hydrogels. By varying the reaction conditions, hydrogels made from nCNFs and a dithiol cross-linker could achieve compression modulus values up to 25 kPa. The materials were stable in aqueous suspensions and the cross-linked hydrogels still exhibited shear thinning behavior with high recovery, which demonstrated that even though effective cross-links were formed, a complete network was not. Through this study, thiolnorbornene crosslinking of CNFs could create robust hydrogels and improve aqueous stability that could have applications in sustainable materials and biomaterials. 
    more » « less
  4. Depositing carbon nanotubes (CNTs) into carbon fiber reinforced polymer composites (CFRPs) is challenging because of the need for complicated lab-scale processes and toxic chemical dispersants that makes conventional means of processing less compatible with existing industrial procedures for large-scale applications. In this work, a scalable supercritical CO2-assisted atomization technique is used to effectively deposit hybrid CNTs in CFRPs allowing them to boost their functionality and tailor the microstructure. Cellulose nanocrystals (CNCs) are utilized to create hybrid nanostructures with CNTs (CNC bonded CNT) that enables stabilization of CNTs in nontoxic media, i.e., water, and this promotes the scalability of the process. According to Zeta potential values, CNCs successfully stabilize CNTs in water suspension. Scanning electron microscopy (SEM) micrographs show hybrid CNC bonded CNTs are homogeneously dispersed on the carbon fiber surface. According to the in-situ bending test under the optical microscope, crack propagation is hindered by engineered hybrid CNT nanostructures in the modified CFRP whereas neat CFRP exhibits low crack growth resistance due to the uninterrupted crack propagation in the continuous epoxy matrix. Our results imply that this strategy probes the importance of new controlled manufacturing of hybrid nanostructures through evaporation‑induced self‑assembly of nanocolloidal droplets, and allows for tailoring of the desired properties of nanostructured composites.

     
    more » « less
  5. : Hongjun Lin and Meijia Zhang (Ed.)
    New methods of oil-water separation are needed as industrialization has increased the prevalence of oil-water mixtures on Earth. As an abundant and renewable resource with high oxygen and grease barrier properties, mechanically refined cellulose nanofibrils (CNFs) may have promising applications for oil-water separations. The unbleached form of these nanofibrils, lignin-containing CNFs (LCNFs), have also been found to display extraordinary barrier properties and are more environmentally friendly and cost-effective than CNFs. Herein, both wet and dry LCNF-modified filter papers have been developed by coating commercial filter paper with an LCNF suspension utilizing vacuum filtration. The LCNF-modified filters were tested for effectiveness in separating oil-water emulsions, and a positive relationship was discovered between a filter’s LCNF coat weight and its oil collection capabilities. The filtration time was also analyzed for various coat weights, revealing a trend of high flux for low LCNF coat weights giving-way-to predictions of a coat weight upper limit. Additionally, it was found that wet filters tend to have higher flux values and oil separation efficiency values than dry filters of the same LCNF coat weight. Results confirm that the addition of LCNF to commercial filter papers has the potential to be used in oil-water separation. 
    more » « less