skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shear-free mixing to achieve accurate temporospatial nanoscale kinetics through scanning-SAXS: ion-induced phase transition of dispersed cellulose nanocrystals
Time-resolved in situ characterization of well-defined mixing processes using small-angle X-ray scattering (SAXS) is usually challenging, especially if the process involves changes of material viscoelasticity. In specific, it can be difficult to create a continuous mixing experiment without shearing the material of interest; a desirable situation since shear flow both affects nanoscale structures and flow stability as well as resulting in unreliable time-resolved data. Here, we demonstrate a flow-focusing mixing device for in situ nanostructural characterization using scanning-SAXS. Given the interfacial tension and viscosity ratio between core and sheath fluids, the core material confined by sheath flows is completely detached from the walls and forms a zero-shear plug flow at the channel center, allowing for a trivial conversion of spatial coordinates to mixing times. With this technique, the time-resolved gel formation of dispersed cellulose nanocrystals (CNCs) was studied by mixing with a sodium chloride solution. It is observed how locally ordered regions, so called tactoids, are disrupted when the added monovalent ions affect the electrostatic interactions, which in turn leads to a loss of CNC alignment through enhanced rotary diffusion. The demonstrated flow-focusing scanning-SAXS technique can be used to unveil important kinetics during structural formation of nanocellulosic materials. However, the same technique is also applicable in many soft matter systems to provide new insights into the nanoscale dynamics during mixing.  more » « less
Award ID(s):
1808690
PAR ID:
10217265
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Lab on a Chip
ISSN:
1473-0197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During the past decade, cellulose nanofibrils (CNFs) have shown tremendous potential as a building block to fabricate new advanced materials that are both biocompatible and biodegradable. The excellent mechanical properties of the individual CNF can be transferred to macroscale fibers through careful control in hydrodynamic alignment and assembly processes. The optimization of such processes relies on the understanding of nanofibril dynamics during the process, which in turn requires in situ characterization. Here, we use a shear-free mixing experiment combined with scanning small-angle X-ray scattering (scanning-SAXS) to provide time-resolved nanoscale kinetics during the in situ assembly of dispersed cellulose nanofibrils (CNFs) upon mixing with a sodium chloride solution. The addition of monovalent ions led to the transition to a volume-spanning arrested (gel) state. The transition of CNFs is associated with segmental aggregation of the particles, leading to a connected network and reduced Brownian motion, whereby an aligned structure can be preserved. Furthermore, we find that the extensional flow seems to enhance the formation of these segmental aggregates, which in turn provides a comprehensible explanation for the superior material properties obtained in shear-free processes used for spinning filaments from CNFs. This observation clearly highlights the need for different assembly strategies depending on morphology and interactions of the dispersed nanoparticles, where this work can be used as a guide for improved nanomaterial processes. 
    more » « less
  2. null (Ed.)
    ABSTRACT: Hydration of the amphiphilic diblock oligomer C16H33(CH2CH2O)20OH (C16E20) leads to concentration-dependent formation of micellar body-centered cubic (BCC) and Frank− Kasper A15 lyotropic liquid crystals (LLCs). Quiescent thermal annealing of aqueous LLCs comprising 56−59 wt % C16E20 at 25 °C after quenching from high temperatures established their ability to form short-lived BCC phases, which transform into long-lived, transient Frank−Kasper σ phases en route to equilibrium A15 morphologies on a time scale of months. Here, the frequency and magnitude of applied oscillatory shear show the potential to either dynamically stabilize the metastable BCC phase at low frequencies or increase the rate of formation of the A15 to minutes at high frequencies. Time-resolved synchrotron small-angle X-ray scattering (TR-SAXS) provides in situ characterization of the structures during shear and thermal processing. This work shows that the LLC morphology and order−order phase transformation rates can be controlled by tuning the shear strain amplitude and frequency. 
    more » « less
  3. Abstract Herein, phase transitions of a class of thermally-responsive polymers, namely a homopolymer, diblock, and triblock copolymer, were studied to gain mechanistic insight into nanoscale assembly dynamics via variable temperature liquid-cell transmission electron microscopy (VT-LCTEM) correlated with variable temperature small angle X-ray scattering (VT-SAXS). We study thermoresponsive poly(diethylene glycol methyl ether methacrylate) (PDEGMA)-based block copolymers and mitigate sample damage by screening electron flux and solvent conditions during LCTEM and by evaluating polymer survival viapost-mortemmatrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). Our multimodal approach, utilizing VT-LCTEM with MS validation and VT-SAXS, is generalizable across polymeric systems and can be used to directly image solvated nanoscale structures and thermally-induced transitions. Our strategy of correlating VT-SAXS with VT-LCTEM provided direct insight into transient nanoscale intermediates formed during the thermally-triggered morphological transformation of a PDEGMA-based triblock. Notably, we observed the temperature-triggered formation and slow relaxation of core-shell particles with complex microphase separation in the core by both VT-SAXS and VT-LCTEM. 
    more » « less
  4. Abstract Control over vesicle size during nanoscale liposome synthesis is critical for defining the pharmaceutical properties of liposomal nanomedicines. Microfluidic technologies capable of size-tunable liposome generation have been widely explored, but scaling these microfluidic platforms for high production throughput without sacrificing size control has proven challenging. Here we describe a microfluidic-enabled process in which highly vortical flow is established around an axisymmetric stream of solvated lipids, simultaneously focusing the lipids while inducing rapid convective and diffusive mixing through application of the vortical flow field. By adjusting the individual buffer and lipid flow rates within the system, the microfluidic vortex focusing technique is capable of generating liposomes with precisely controlled size and low size variance, and may be operated up to the laminar flow limit for high throughput vesicle production. The reliable formation of liposomes as small as 27 nm and mass production rates over 20 g/h is demonstrated, offering a path toward production-scale liposome synthesis using a single continuous-flow vortex focusing device. 
    more » « less
  5. Highly siderophile elements (HSEs; namely Ru, Rh, Pd, Re, Os, Ir, Pt, and Au) in Earth’s mantle require the addition of metals after the formation of Earth’s core. Early, large collisions have the potential to deliver metals, but the details of their mixing with Earth’s mantle remain unresolved. As a large projectile disrupts and penetrates Earth’s mantle, a fraction of its metallic core may directly merge with Earth’s core. Ensuing gravitational instabilities remove the remaining projectile’s core stranded in Earth’s mantle, leaving the latter deprived of HSEs. Here, we propose a framework that can efficiently retain the metallic components during large impacts. The mechanism is based on the ubiquitous presence of a partially molten region in the mantle beneath an impact-generated magma ocean, and it involves rapid three-phase flow with solid silicate, molten silicate, and liquid metal as well as long-term mixing by mantle convection. In addition, large low-shear-velocity provinces in the lower mantle may originate from compositional heterogeneities resulting from the proposed three-phase flow during high-energy collisions. 
    more » « less