skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finding Your Way: Shortest Paths on Networks
Traveling to different destinations is a major part of our lives. We visit a variety of locations both during our daily lives and when we are on vacation. How can we find the best way to navigate from one place to another? Perhaps we can test all of the different ways of traveling between two places, but another method is to use mathematics and computation to find a shortest path between them. In this article, we discuss how to construct shortest paths and introduce Dijkstra’s algorithm to minimize the total cost of a path, where the cost may be the travel distance, the travel time, or some other quantity. We also discuss how to use shortest paths in the real world to save time and increase traveling efficiency.  more » « less
Award ID(s):
1922952
PAR ID:
10335398
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers for Young Minds
Volume:
9
ISSN:
2296-6846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider several variants of the map-matching problem, which seeks to find a path Q in graph G that has the smallest distance to a given trajectory P (which is likely not to be exactly on the graph). In a typical application setting, P models a noisy GPS trajectory from a person traveling on a road network, and the desired path Q should ideally correspond to the actual path in G that the person has traveled. Existing map-matching algorithms in the literature consider all possible paths in G as potential candidates for Q. We find solutions to the map-matching problem under different settings. In particular, we restrict the set of paths to shortest paths, or concatenations of shortest paths, in G. As a distance measure, we use the Fréchet distance, which is a suitable distance measure for curves since it takes the continuity of the curves into account. 
    more » « less
  2. The trajectory-aware lowest-cost path selection problem aims to find the lowest-cost path using trajectory data. Trajectory data is valuable since it carries information about travel cost along paths, and also reflects travelers' routing preference. Path-centric travel cost estimation models using trajectory data grows popular recently, which considers the auto-correlation of the energy consumption on different segments of a path. However, path-centric models are more computationally expensive than edge-centric models. The main challenge of this problem is that the travel cost of every candidate path explored during the process of searching for the lowest-cost path need to be estimated, resulting in high computational cost. The current path selection algorithms that use path-centric cost estimation models still follow the pattern of "path + edge" when exploring candidate paths, which may result in redundant computation. We introduce a trajectory-aware graph model in which each node is a maximal trajectory-aware path. Two nodes in the trajectory-aware graph are linked by an edge if their union forms a trajectory-union path. We then propose a path selection algorithm to find a path in the proposed trajectory-aware graph which corresponds to the lowest-cost path in the input spatial network. We prove theoretically the proposed algorithm is correct and complete. Moreover, we prove theoretically that the proposed path selection algorithm cost much less computational time than the algorithm used in the related work, and validate it through experiments using real-world trajectory data. 
    more » « less
  3. We study the problem of finding shortest paths in the plane among h convex obstacles, where the path is allowed to pass through (violate) up to k obstacles, for 𝑘≤ℎ. Equivalently, the problem is to find shortest paths that become obstacle-free if k obstacles are removed from the input. Given a fixed source point s, we show how to construct a map, called a shortest k-path map, so that all destinations in the same region of the map have the same combinatorial shortest path passing through at most k obstacles. We prove a tight bound of 𝛩(𝑘𝑛) on the size of this map, and show that it can be computed in 𝑂(𝑘2𝑛log𝑛) time, where n is the total number of obstacle vertices. 
    more » « less
  4. Tourism is one of the key revenue generators in communities worldwide. In the present day, traveling has become a lot easier with all the information available through the Internet. However, there are still challenges in identifying the right medical resources while traveling to a new city for the first time. In this research, we propose a privacy-assured framework that can help in identifying the medical services for a tourist. Through this research, we have developed a cost-effective tour wearable, iMED-Tour, that can notify the user if they need to visit a hospital service in case of emergency and provide suggestions for the preferred medical services. The proposed framework was evaluated for its latency with regards to the wearable's performance and ability to find the shortest path. The iMED-Tour wearable had an overall latency in the order of few milliseconds and the shortest path algorithm implemented in CupCarbon had a latency of 10 seconds. 
    more » « less
  5. Abstract Dynamic processes on networks, be it information transfer in the Internet, contagious spreading in a social network, or neural signaling, take place along shortest or nearly shortest paths. Computing shortest paths is a straightforward task when the network of interest is fully known, and there are a plethora of computational algorithms for this purpose. Unfortunately, our maps of most large networks are substantially incomplete due to either the highly dynamic nature of networks, or high cost of network measurements, or both, rendering traditional path finding methods inefficient. We find that shortest paths in large real networks, such as the network of protein-protein interactions and the Internet at the autonomous system level, are not random but are organized according to latent-geometric rules. If nodes of these networks are mapped to points in latent hyperbolic spaces, shortest paths in them align along geodesic curves connecting endpoint nodes. We find that this alignment is sufficiently strong to allow for the identification of shortest path nodes even in the case of substantially incomplete networks, where numbers of missing links exceed those of observable links. We demonstrate the utility of latent-geometric path finding in problems of cellular pathway reconstruction and communication security. 
    more » « less